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Introduction

Paul’s Assignment

It was early 1987. A programmer at our office whom I was
helping strengthen his Assembler language skills asked me to assign
him a program to test what he had learned. I thought about it.
I wanted to give Paul something very simple in concept yet
sufficiently challenging technically. Then it came to me. A
program that would meet both criteria and that would also achieve
practical results would be one that generates triangular number
arrays as detailed in my unpublished paper "Lines of Primes!".

Triangular Arrays

These triangular arrays are akin to the arrangement of
numbered bowling pins or pocket pool balls in possible initial
setups for those sports, viz.:

4 5 6 and 4 5 6 respectively.
7 8 9 10 7 8 9 10

11 12 13 14 15
Figure 1. Triangular arrays of bowling pins and pocket pool balls.

Originally just done this way, only extending for row upon
row, the arrays evolved to being "left-justified" as in:

1
2 3
4 5 6
7 8 9 10
etc.
Figure 2. Left-justified triangular array of whole numbers.

Before briefly describing variants of strictly triangular
arrays that were also discussed in the original paper, an
explanation of just what these arrays are used for is in order.

1



Prime Numbers

The triangular arrays and their variants are very useful for
depicting patterns of prime numbers. As a reminder, primes are
whole numbers not evenly divisible by any whole numbers other than
themselves and 1. For example, while 23 is prime, since only 1 and
23 divide cleanly into it, 6 is not prime, being divisible by 2 and
3 besides by 1 and 6. The first several primes are: 2, 3, 5, 7,
11, 13, 17, 19, 23, and so on.

Positions in an array that correspond to primes are marked,
while positions of non-primes are left blank. This makes the
primes stand out wvisually.

Wilson’s Theorem

In general, the prime numbers are not patterned. Though
simple to understand, they defy attempts to derive a formula that
will generate them. There is a formula, Wilson's Theorem, that

will tell you if a number is prime, but it quickly becomes unwieldy
for a person to use. Wilson's Theorem, that (x - 1)! + 1 is evenly
divisible by x if and only if x is prime, involves the explosively
large numbers called factorials.

Factorials

x factorial, or x!, is the product of all whole numbers from
1 to Xx. For example, 5! =5 « 4 « 3 « 2 « 1 = 120. 10! is a 7-
digit number. 20! is a 19-digit number. 50! is a 65-digit number.
Any but the most trivial factorials are numbers unmanageably large,
even for computers.

Patterns of Primes

There are many properties of the sequence of prime numbers
that have been studied, yet patterns of primes have remained
elusive. In my earlier work with triangular arrays I found quite
a few patterns, as documented in "Lines of Primes!". By varying
the counting scheme from one where the array has a single number
("1") in the first row and exactly one more number per row in each
succeeding row, various patterns of primes appear. For example,
by having two numbers in the top row and having each row contain



two more numbers than the row preceding it, different patterns
emerge than those in the original array.

The "lines" of primes found so far with the pictorial method
are transitory, going only so far before being broken. Indeed,
even with these inroads into finding pattern to them, the primes
retain their mystique and aura of baffling randomness, given the
simplicity of their concept Yet, study of the coexistence of
pattern and randomness in the primes may yield insight into natural
processes and contribute to the dlscu551on of a topic of increasing
current interest, "the onset of chaos.

The Onset of Chaos

The new area of mathematics called "chaos theory" is concerned
with describing natural phenomena exhibiting chaotic behavior,
which until now has defied precise description. The approach is
to look for transitions from order into chaos, such as 1in smooth
flows becoming turbulent.

Patterns with Line Continuation of x> + x + 41

Returning to our events of 1987, while Paul was generating
triangular arrays and tables of primes, it dawned on me that the
work that I had done earlier on "patterns with line continuation"
might lead to an ideal illustration of the onset of chaos.

Briefly, when many of the initially unbroken sequences of
primes in the triangular arrays are finally broken, they do not
immediately degenerate into complete chaos. For a short transition
period there is pattern still. The following example will help to
explain this. For the formula x? + x + 41, forty consecutive x's
(zero through 39) yield a prime number as output. Then the streak
is broken. But it is broken in the following way. The next two
xX's yield non-primes. The next two x's yield primes. Then comes
a non-prime, 4 primes, a non-prime, 6 primes, a non-prime, 8
primes, a non-prime, and finally 10 primes. The following table
summarizes this with more immediacy:



x's input to Consecutive Consecutive
X2 + x + 41 Primes Non-primes

0 - 39 40

40 - 41 2

42 — 43 2

44 1

45 - 48 4

49 1

50 - 55 6

56 1

57 - 64 8

65 1

66 - 75 10

76 - © apparent random distribution

Table 1. Transition of x> + x + 41 from order to chaos.

Given a plot of primes on a triangular array with a top row
of two numbers and succeedlng rows with two more numbers than their
predecessor rows, the ¥+ x + 41 outputs form a vertical column.
With such a visual aid, it is easy to see the initial unbroken
streak of 40 straight prime outputs going down, the stretch with
the 2-4-6-8-10 pattern below that, and the random distribution of
primes and non-primes from there on down. Such a transition from
perfect order, through partial order, into complete chaos could
well provide an ideal "laboratory" for studying the onset of chaos.
I therefore asked Paul to prepare a listing of this variant of the
triangular array but extended to x = 100,000.

Array Printout for x up to 100,000

Given this data to work with, I could ea51ly look for any
otherwise hidden patterns in the outputs of x> + x + 41. After
eagerly scannlng the listing to find nothing remarkable in the
strings of primes revealed I decided to shift my orientation to
look at the outputs of x> + x + 41 that are not prime.

Non-prime Outputs

These non-primes are by definition "composite," being
"composed of" or divisible by whole numbers besides themselves and
1. Might there be anything interesting about the divisors, or
"factors," of the non-prime outputs° Another approach to
predicting the prime outputs of x* + x + 41 might be predicting the



non-prime outputs and thereby, indirectly, the primes.

Order in Chaos’ Own Home Domain?

Although exploration of the territory well beyond the
order-to-chaos transition zone discussed above might not
immediately shed any new light on the onset of chaos, if it turned
out that the home territory of chaos, the vast majority of the
domain of outputs, were actually amenable to orderly analysis, then
this might lead to insight into other application areas where chaos
has appeared unbreachable. Even 1if no such orderliness were
discovered within the chaos, it might still be rewarding to look
there for whatever might be found.

As it turns out, the non-prime outputs of x? + x + 41 all fall
into an exquisitely patterned tapestry when they are each
decomposed into two factors.



Factors of Composite x* + x + 41 Outputs

The First Composites’ Factors

The first composite x> + x + 41 for an x above zero is for x
= 40. Calling x> + x + 41 the function of x, or f(x), f£(40) =
1681. Besides being 1 - 1681, 1681 = 41 « 41. The next composite
f(x) is £(41). f£f(41) = 1763 = 41 + 43. Next follow f(44) = 2021
= 43 « 47, £(49) = 2491 = 47 - 53, and so on as listed below in
Table 2:

X f(x) Factors of f(x)
40 1681 41 - 41
41 1763 41 -+ 43
44 2021 43 + 47
49 2491 47 + 53
56 3233 53 + 61
65 4331 61 « 71
76 5893 71 - 83
Table 2. Factors of the first several composite x2 + x + 41's.

The numbers appearing here as factors are not just any
numbers. They are the outputs of x> + x + 41 for the first several
x's. £(0) = 41, f£(1) = 43, and so on as in Table 3 below:

x

f(x)

41
43
47
53
61
71
83

UL WO

Table 3. Outputs of x> + X + 41 for the first several X's.



f(x) . f(x + 1) Composites

The patterning of factors seen in Table 2 suggests that in
general f(x) + f(x + 1) yields a number that is also an output of
x> + X + 41. This pattern does indeed continue indefinitely. One
might question the very first factor pair, 41 - 41, as belonging
in the pattern. This pair can be interpreted as f(-1) -+ £(0),
since f(-1) is also 41:

(-1)% + (-1) + 41 = 1 + (-1) + 41 = 41.

Thus the pattern holds for the first seven composite outputs,
covering the zone of transition to chaos, x's from 40 through 76.
Can we prove that f(x) +« f(x + 1) always yields f(y) where y is
whole? Yes. By combining the information in Tables 2 and 3, we
can derive the following:

factors
v f(y) of f(y) f(x) f(x+1) X x+1  (x+1)% 40 + (x+1)?
40 1681 4141 41 41 -1 0 0 40
41 1763 4143 41 43 0 1 1 41
44 2021 4347 43 47 1 2 4 44
49 2491 4753 47 53 2 3 9 49
56 3233 53+61 53 61 3 4 16 56
65 4331 6171 61 71 4 5 25 65
76 5893 7183 71 83 5 6 36 76

Table 4. f(x) « f(x + 1) yields f(y) for x> + x + 41.

Note that y = 40 + (x + 1)%. Therefore:
y = 40 + (x? + 2x + 1) = x* + 2x + 41. So,

f(y) = (x* + 2x + 41)? + (x* + 2x + 41) + 41.
We need to show that this expression is equivalent to

f(x) » £(x + 1) = (x> + x + 41) « [(x + 1) + (x + 1) + 41].

f(y) = (x* + ax® + 86x* + 164x + 1681) + (x% + 2x + 41) + 41

xt + 4% + 87x% + 166x + 1763.



(x> + x + 41) » [(x* + 2x + 1) + (x + 1) + 41)

It

f(x) « f£(x + 1)

(x> + x + 41) + (x* + 3x + 43)

= x* + 4x® + 87x% + 166x + 1763.
Thus, f(x) + f(x + 1) always does yield some f(y).

Immediate Exceptions

One might be tempted to conclude that all composite outputs
factor in this way. Unfortunately, matters are not that simple.
The very next composite output is f(81) = 6683 = 41 + 163. 1In
fact, before we hit the next output of type f(x) + f(x + 1), where
the factors are 83 +« 97 = 8051 = £(89), we find f(82) 6847 = 41
. 167, f£(84) = 7181 = 43 + 167, and f(87) = 7697 = 43 179.

Systematic List of Factor Pairs

Systematically listing the factor pairs for all of the
composite outputs for x = 40 up to x = 190, we can see the
beginnings of a fascinating tapestry of interwoven sequences of
factor pair patterns:



X f(x) Factors

40 1681 41 « 41
41 1763 41 + 43
44 2021 43 + 47
49 2491 47 + 53
56 3233 53 - 61
65 4331 61 - 71
76 5893 71 + 83
81 6683 41 +« 163
82 6847 41 -« 167
84 7181 43 + 167
87 7697 43 « 179
89 8051 83 97:]
91 8413 47 + 179
96 9353 47 + 199
102 10547 —b53 « 199
104 10961 87 + 113
109 12031 ——53 .« 227
117 13847 —61 « 227
121 14803 113 - 131
122 15047 [—41 + 367
123 15293 —41 « 373
126 16043 —61 + 263
127 16297 43 + 379
130 17071 43 + 397
136 18673 ——71 + 263
138 19223 47 + 409
140 19781 131 - 151
143 20633 47 « 439
147 21797 —71 + 307
155 24221 —53 o 457:}
159 25481 ——83 + 307
161 26123 151 + 173
162 26447 53 + 499
163 26773 [:——41 « 653
164 27101 —41 ¢ 661
170 29111 43 « 677
172 29797 ——83 + 359
173 30143 43 + 701
178 31903 ——61 + 523
184 34081 73 + 197
185 34451 47 + 733
186 34823 97 e« 359
187 35197 —61 + 577
190 36331 47 + 773
Table 5. Interwoven sequences of factor pair patterns.



Tapestry Mapping

In order to get a handle on the scheme of the composite
outputs of x* + x + 41, if such a scheme exists, the tapestry
illustrated in Table 5 must be understood. The next logical step
in unraveling this increasingly intricate sequence of threads is
to break the single column of factor pairs into individual columns
for each unique subsequence within it. For example, the
subsequence starting with 41 + 41 would appear in one column, while
the subsequence starting with 41 + 163 would appear in a second
column to the right of the first column. The results of this
approach when applied to the entries in Table 5, along with some
additional data from beyond x = 190, appear in Table 6:

X f(x) Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.b Seq.7
40 1681  41e 41

41 1763  41e 43

44 2021 43 47

49 2491 47 53

56 3233 53e 61

65 4331 61 71

76 5893 71 83

81 6683 41163

82 6847 41167

84 7181 43167

87 7697 43179

89 8051 83+ 97

91 8413 47179

96 9353 47199

102 10547 53199

106 10961 97113

109 12031 536227

117 13847 61227

121 14803 113131

122 15047 410367

123 15293 41373

126 16043 610263

127 16297 43379

130 17071 430397

136 18673 71263

138 19223 470409

140 19781 131151

143 20633 47439

147 21797 71307

155 24221 53457

159 25481 834307

161 26123 151173

162 26447 530499

163 26773 41653
164 27101 41661
170 29111 43677
172 29797 83359

173 30143 43701
178 31903 61523

184 34801 173197

185 34451 47733
186 34823 97359

187 35197 61577

190 36331 47773
201 40643 97419
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204 41861 411021

205 42271 411031

207 43097 71607

208 43513 53821

209 43931 197223

213 45623 431061

215 46481 534877

216 46913 4301091

217 47347 113419

218 47783 71673

232 54097 4741151

234 55031 113487

236 55973 223251

237 56447 471201

239 57401 614941

242 58847 83709

244 59821 1630367
245 60311 4101471

246 60803 411483

248 61793 6141013

249 62291 167373
251 63293 167379
252 63797 1314487

255 65321 83787

256 65833 4341531

259 67381 431567

261 68423 531291

265 70531 251281

266 71063 1794397
268 72133 5361361

270 73211 1794409
271 73753 131563

278 77603 711093

279 78161 471663

283 80413 97829

284 80981 4741723

Table 6. Unique factor pair sequences split into separate columns.

Pattern Across Subsequences

If one looks at the x's up through around 240, all of the
composite outputs appear to fall in one or another of the
subsequences beginning with 41 - "something" and 41 + "something
a little higher." And, these "somethings" themselves all fall into
a nice pattern:

Subsequence First Factor Pair Second In Terms
or Series in Series Factor of 41
1 41 . 41 41 l - 41 - O
2 41 . 163 163 4 « 41 - 1
3 41 . 367 367 9 « 41 - 2
4 41 - 653 653 16 - 41 - 3
5 41 - 1021 1021 25 « 41 - 4

Table 7. Pattern of series-starting factor pairs' second factor.
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So, these "series starters" are, for series x, equal to 41.-
[x2 e 41 - (x — 1)] = 41 - (41x2 - x + 1). The second factor palr
in each of these series consists of 41 and
[xZ + 41 - (x - 1)] + 2x = 41x> + x + 1. For example, the second
factor pair in the series begun by the factor pairs in Table 7 are:

Second Second Factor
Subsequence Factor Pair Second From First
or Series in Series Factor Factor Pair Difference
1 41 . 43 43 41 2
2 41 . 167 167 163 4
3 41 . 373 373 367 6
4 41 . 661 661 653 8
5 41 « 1031 1031 1021 10

Table 8. Relationship between first and second factor pair.

Exceptions to 41-type Sequences

Again, "unfortunately," this pattern of series alone cannot
account for all of the composite outputs. The first indication
that this pattern is not all that there is occurs at f(x) for x =
244. This number, 59821, is 163 =+ 367. None of the 41-type
subsequences contain this factor pair. Several more "anomalous"
factor pairs quickly turn up as well, nearby. £(249) = 62291 = 167
» 373, f£(251) = 63292 = 167 + 379, and so on.

163-type Sequences?

It seems that a new type of series, with the first factor of
its first factor pair equal to 163 instead of 41, begins with
f(244). I naturally sought other 163-based sequences. Since 163
was familiar from Table 7, I tried 163 + 653, 163 + 1021, and so
on, to see if their products were outputs of x> + x + 41. They are
not. Yet I felt sure that there should be a whole family of series
based on 163 just as there is one based on 41.

Other-type Sequences?

For that matter, now that the precedent was set where 41 did
not start all series, I also looked at 367 + 653, 653 « 1021, and
so on, as series starters in analogy with 163 + 367, given Table
7. But what other 163-based, 367-based, and so on, series were
there, if any, as it seemed there must be?

12



Printout for x up to A Million

At this point I asked Paul to generate the array for numbers
up to a million. I needed more data.

Anomalies

When the array was produced, I made a systematic chart of all
composite outputs for f(x) up to a million. In the chart, every
41.n -based composite was marked as such, and every 163 <+ 367 -
based composite, 367 + 653 -based composite, and so on, was also
marked. Any composite not accounted for by any of these series
must therefore belong to some as yet unknown set. The "anomalies"
that turned up, providing me with priceless data to work with, are
as follows:

Factors Factors Factors
X of f(x) X of f(x) X of f(x)
407 163 + 1019 630 379 + 1049 835 499 « 1399
416 167 - 1039 652 263 « 1619 856 367 + 1999
418 167 « 1049 662 263 +« 1669 867 523 + 1439
445 179 - 1109 663 397 + 1109 869 373 « 2027
449 179 « 1129 679 409 -« 1129 885 379 « 2069
494 199 + 1229 693 199 « 2417 892 189 + 4003
500 199 + 1259 699 199 « 2459 896 163 « 4931
563 227 + 1399 733 163 +« 3301 898 199 « 4057
570 163 « 1997 734 439 « 1229 915 263 + 3187
571 227 + 1439 752 167 - 3391 924 397 + 2153
583 167 « 2039 758 457 + 1259 925 263 + 3257
585 167 + 2053 761 307 + 1889 956 409 - 2237
611 367 + 1019 773 307 « 1949 966 577 + 1619
622 373 « 1039 790 227 « 2753 978 367 +» 2609
624 179 « 2179 803 179 - 3607 986 179 + 5437
628 179 « 2207 807 179 + 3643 995 373 + 2657
Table 9. "Anomalies" -- factor pairs not fitting known series.

Teasing out the Threads

Again, it is productive to separate this mixed 1list into
subsequences, each with its own column. A condensed form of that
is given in Table 10 as follows:
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Factors Factors Factors
X of f(x) X of f(x) X of f(x)

407 163 1019 570 163 1997 733 163 » 3301
416 167 1039 583 167 2039 (750 167 « 3373)
418 167 1049 585 167 2053 752 167 + 3391
445 179 1109 624 179 2179 803 179 « 3607
449 179 1129 628 179 2207 807 179 + 3643
494 199 1229 693 199 2417 892 199 « 4003
500 199 1259 699 199 2459 898 199 « 4057
563 227 1399 790 227 2753

571 227 1439 (798 227 2809)

652 263 1619 915 263 3187

662 263 1669 925 263 3257 896 163 +« 4931
761 307 1889 (917 167 + 5041)
773 307 1949 (919 167 « 5063)
(890 359 2209) 982 179 « 5393
(904 359 2279) 986 179 « 5437
611 367 1019 856 367 1999 978 367 +« 2609
622 373 1039 869 373 2027 995 373 « 2657
630 379 1049 885 379 2069

663 397 1109 924 397 2153

679 409 1129 956 409 2237

734 439 1229

758 457 1259

835 499 1399

867 523 1439

966 577 1619

Table 10. The anomalies organized.

Note: The list entries in parentheses were not "anomalies," their

product being producible by an already known series such as the
series beginning with 41 -

Families of Series

The family of 41en

163.

families of series based on 163+n and 367+.n as follows:

14
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41 - 41 163 -« 367 367 +« 653
41 - 163 163 - 1019 367 - 1019
41 « 367 163 « 1997 367 « 1999
41 - 653 163 « 3301 367 + 2609
41 - 1021

Table 11. Three families of series-starting factor pairs.

A Brief Look Ahead

We are now about to embark on a journey into the details of
these known families of series of factor pairs. Along the way we

will derive a similar family of series for 653. In the process we
will develop and use several parameters for analyzing a family.
This analysis will reshape the 41-family. This will in turn

reshape the other families.

By the time that we emerge again, we will have a powerful
arsenal of analytical tools and a deeper understanding of these
families. We will then be ready to return to mapping out the
families. We will see how the families are themselves grouped into
a superfamily, or plane.

That is enough looking ahead for now, but I will nevertheless

mention that our travels will eventually take us quite far beyond
even the level of the plane of families.
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First Family Portraits

Summary Charts

A summary chart was prepared for each of the three known
families of series. Each chart contains several aspects. Please
refer to Chart 1 in Appendix A during the following discussion.

The charts are arranged into columns by series, and into rows
by aspect. Above each column is a series label, for example gs for
the series starting with factor pair 41 « 367.

Series Designation

th

In general, the notation ' S refers to the x" factor pair in

series w within family v. So, ESG is the sixth factor pair in the
third series in the first family. The first family is the 41-
family; the third series within the 41-family is the one beginning
with 41+367; the sixth factor pair in that series is 47.439.

Chart Aspects

Moving down the left-hand side of a chart, the aspect labels
are respectively:

%y

operands

X spacing
op2 spacing
op2;:41
X;:41

opl spacing

Each of these will be explained in turn.

X

The two numbers in a factor pair produce another number when
multiplied together. Our factor pairs produce products equal to
outputs of x> + x + 41. For example, 41+163 = 6683. 6683 = x° +
X + 41 for x = 81. 81 is thus the input x into x> + x + 41 that
produces 6683, which has the factor pair 41+163. 1In our summary

16



charts, "x;" refers to the x input for the first factor pair in a
factor pair series. Thus, in this example x; would be 81. x, would
refer to the second series-member's input value -- in the case of
the series started by 41-163 the second factor pair is 41- 167
which produces 6847. The input x that produces 6847 is 82 (82 +
82 + 41 = 6847), so x, for this series is 82. x; would be 84 in
this case, since f(84) = 7181 = 43167, the third factor pair in
this factor pair series. And so on.

Operands

The term "operands" here is used synonymously with "factor
pair," in this case the factor pair starting a series. 1In general
"opl" is the left-hand factor 1n a factor pair, while "op2" is the
right-hand factor. For series S the starting pair is 41+653, so
the operands are 41 and 653.

x Spacing

This is the spacing between x's in the series. Table 12 below
shows the first eight entries in the series begun by 41+367:

X f(x) operands
122 15047 41 « 367
123 15293 41 - 373
127 16297 43 « 379
130 17071 43 « 397
138 19223 47 + 409
143 20633 47 « 439
155 24221 53 + 457
162 26447 53 ¢ 499

Table 12. The series begun by 41 « 367.

Odd and Even Spacers

It turns out that the spacing between consecutive x's follows
a simple pattern:

17



Distance

X Between x's
122
1 = 1-1
123
4 = 22
127
3 = 1.3
130
8 = 2+4
138
5 = 1.5
143
12 = 2+6
155
7 = 1.7
162
Table 13. The pattern of spacing between consecutive x's.

This pattern for series spacing,

of one coefficient

(multiplier) applying to all odd numbers and another coefficient
applying to all even numbers, comes up everywhere in this work.
We can abbreviate the spacing in such a well-behaved series by
simply noting the odd numbers' coefficient and the even numbers'

coefficient. For example, for SS the x spacing is indicated as:
1-1,3,5... or just 1.
2¢2,4,6... 2

A B C,and D

We will introduce four items, named A,
help with calculating values in these series.
simple, having the form

18
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X Distance Between x's

#1
#s

#2

etc.
Table 14. The pattern of distance between x's.

so that x4, for example, 1is equal to x; + #; + #, + #, + #, + #;, = ¥,
+ 38, + 24,

Floor and Ceiling

The way to summarize this pattern is to find how many #;'s and
#,'s to add to x; for any given n, to get x,.

Looking at the following table it can be seen that the number
of #,'s to add for n is n+2 rounded down. The number of #,'s to add
for n is n+2 rounded up, minus one. A number x rounded down,
called the "floor" of x, will be expressed as |x|. Similarly, a
number X rounded up, called the "ceiling" of x, will be represented
here as [x].

Number Number
n X of #,'s of #,'s
1 x 0 0
2 X, + # 1 0
3 X, + # + #, 1 1
4 X, + #, + #, + # 2 1
5 X, t #1 + #2 + #1 + #2 2 2
6 X) + #) t #y +ow #y 3 2
Table 15. How many times to include odd and even spacing for x.
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We can thus summarize as follows:

X, = %, + ([n+2] « #)) + [([n#2] - 1) * #,]

Example for Simple First-power Spacing

To illustrate that this really works, let us use an example.
We will first build a series of this type, then demonstrate that
the formula produces the equivalent result.

Let us take x; = 100, #;, = 5, and #, = 10. This means that the
first number in the series is 100, the second is 105, the third is
115, the fourth is 120, and so on as follows:

n D &% #, t,
1 100
5
2 105
10
3 115
5
4 120
10
5 130
5
6 135

Table 16. An example showing odd and even spacing.

Now, let us see how the formula gives the same answers. "Sum"
here indicates the sum of three things -- x;, [n+2|+#,, and ([n+2]-
1) *#, —— in other words 100 plus the two columns preceding "sum."

Ln+2J ( rn+21 -1
o# o#,

n_ x._ ni2 !n+2 | fn+21 rn+21 -1 #1___ 1 sum
1 100 .5 0 1 0 5% o 0 100
2 105 1.0 1 1 0 5 10 5 0 105
3 115 1.5 1 2 1 5 10 5 10 115
4 120 2.0 2 2 1 5 10 10 10 120
5 130 2.5 2 3 2 5 10 10 20 130
6 135 3.0 3 3 2 5 10 15 20 135

Table 17. Verifying that the formula using odd and even spacing is correct.
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A, and B,

For ease of notation, we can call |n+2] "A " and [n+27]-1 "B ."
Thus:

xn

x, + |[n+2|<#;, + ([n+27]-1)+#, becomes

Xn

X, + A o#, + B, *#,-

Second-power Spacing

In the slightly more complicated series such as gs that have
the form illustrated in Table 13, the formula for x, is:

X, = x; + Ln+2J2-#1-+ [n+27] ([n+27] =1) < #,

This is equivalent to:

X, = %, + B2e#, + (B,+1) (B,) -4,

n

C, and D,

Again for convenience, we will use "C " for Aj, and "D " for
(B,+1) (B,) . So

n

X, = X, + C,*#, + D, #,.

Generating x’s By Formula

Now we can look at the x's for a factor pair series such as

gS and see how we can generate any given member by using the
formula:

An = By = h = Oy = Ch On
n_x  x;_|nw2| [m2]-1 A2 (BB #_ #, o#,  «#, sum
1 122 122 0 0 0 0 12 0 0 122
2 123 122 1 0 1 0 1 2 1 0 123
3127 122 1 1 1 2 12 1 4 127
4 130 122 2 1 4 2 12 4 4 130
5 138 122 2 2 4 6 12 4 12 138
6 143 122 3 2 9 6 12 9 12 143
7 155 122 3 3 9 12 1 2 9 2 155
8 162 122 4 3 16 12 1 2 16 2 162

Table 18. Generating 133 x's using the second power x-spacing formula.
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Given the formula we could now directly find any member in the
series of x's.

op2 Spacing

Getting back to Chart 1 in Appendix A, "op2 spacing" is the
spacing between consecutive operand2's, or right-hand factors in
the factor pairs in a factor pair series. op2 spacings are also
of the form x, + C +#, + D +#,, yielding op2 as follows:

op2, = op2; + C,*#; + D *#,.

n

Similarly, all that we need to denote op2 spacing is to list
#, and #,: #;-, #,°.

op2,:41

"op2,:41" is an operand2 in the first factor pair in a series,
in terms of how many times 41 it is, and if not exactly a multiple
of 41, how far from such a multiple it is. For example, for Chart
1 the op2,;'s are 41, 163, 367, 653, 1021, and 1471. These are,
respectively, 1-41-0, 4+41-1, 9-41-2, 16+41-3, 2541-4, and 36+41-
5.

X,:41

"x,:41" concerns X; in terms of 41 in the same manner as for
op2,:41.

op1 Spacing

"opl spacing" is the spacing between successive opl's in a
factor pair series. These too are of the same form as for x
spacing and are denoted the same way: #,*, #,*. There is only one
opl spacing entry for a whole chart, however, since the same opl
sequence applies to all columns in a chart.

Patterns Across Series

Looking at Chart 1, note the patterns in each row. For the
41-family, in the x spacing rows, the odd coefficients are all 1,
while the even coefficients increase by 1 with each series. Also,
the sum of each such coefficient-pair forms a pattern -- in this
case the numbers again increase by 1 per series.
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For 41-series n, the op2 spacing coefficients are 2n and n’-
2n for the "odd" vs. the "even" coefficients, respectively. _The
sum of the odd and the even coefficients for 4l-series n is n”.

op2,;:41 for each 4l-series is n?«41-(n-1) and X;:41 is n+41-1.

Finally, opl spacing is 0+, 1« with sum = 1, for all of the
41-series.

The New .S

Of particular note are the x spacing, op2 spacing, and opl
spacing values for series HS, the 4l1-series starting with the
factor pair 41 « 41. Why? Because these are not the values that
would be applicable to the series as it appears in Table 6. The
values that we do show in Chart 1 were derived by extrapolation
from those of the other 4l1-series.

If Table 6 were used to derive the ﬂs values for x spacing,
op2 spacing, and opl spacing, then those values would be:

118 as in

p:d Table 6 X_spacing op2_ spacing opl spacing
40 41 - 41
1 2 0
41 41 + 43
3 4 2
44 43 « 47
5 6 4
49 47 + 53
7 8 6
56 53 « 61
9 10 8
65 61 « 71
11 12 10
76 71 - 83
Table 19. ﬂs spacings if Table 6 were used to generate them.

These spacings in terms of odd and even coefficients as we
have been using them are:
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X _spacing op2 spacing opl spacinq

1+1 « 1 2 1 0+1 - 1

3+2 +« 2 2 ¢+ 2 2+2 » 2
5+3 ¢ 3 2 « 3 4+3 + 3

T+4 e« 4 2 ¢ 4 6+4 + 4
9+5 « 5 2 « 5 85 « 5

11+6 < 6 2 * 6 10+6 +« 6

Table 20. 0dd and even coefficients for Table 19 spacings.

As can be seen, the only one of these three coefficient pairs
with any chance of conforming to the format that we have seen
everywhere else, of whole number and constant coefficients for both
odd and even spacings, is the 2+, 2+ for op2 spacing.

op2 Spacings in Family 1

Putting aside for the moment that the x spacing and opl
spacing are not even of the desired format, how does the op2
spacing coefficient pair fit in with those of the other 4l1-series?

The odd coefficients of op2 spac1ng for the 41-series above
'S are: 4, 6, 8, 10, and 12. So, if ;S's odd coefficient is 2,
then that fits the pattern. But, an even coefficient of 2 does not
fit with the succeeding values of 0, 3, 8, 15, and 24. What does
fit is -1.

Extrapolated ',S Spacings

So, by extrapolation, then, let us say that op2 spacing for
S is 2+, -1l-. What about the x spacing and opl spacing? The
values for X spacing in the rest of the 4l1-series dictate that S'
X spacing should be 1., 0« Similarly, the opl spacing shculd be
O+, 1-. But, given these coefficient pa1rs for op2 spacing, x
spacing, and opl spacing, what happens to S7 What is its new list
of factor pairs, governed by these new spacings? Do these new
factor pairs still somehow make sense?

The Adjusted .S Sequence

Still starting with 41- 41 as the first factor pair in the
series, the "new" version of 1S looks like this:
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X 'S X spacing op2 spacing opl spacing

40 41+41
i-1 21 0.1
41 41-43
02 =1-2 1.2
11 4341
1.3 2+3 0-3
44 4347
0-4 ~1-4 1-4
44 4743
1+5 25 05
49 4753
0«6 =1-6 16
49 5347

1

Table 21. The adjusted spacings for °;S.

The x's are the familiar ones, but occurring twice (except for
X = 40). Similarly, the factor pairs are the familiar ones,
occurring twice, once "forward" and once "reversed." Nothing
correct is missing, nor is anything spurious present. Why doesn't
X = 40 appear twice? Actually, it does.

How x = 40 Does Appear Twice

Extending the x spacing, op2 spacing, and opl spacing
sequences back another step from x = 40 yields:

X ﬂs X spacing op2 spacing opl spacing
40 4141
00 -1-0 1-0
40 4141
1.1 21 0-1
41 4143
0«2 =12 1.2
Table 22. How X = 40 appears twice in HS.
This makes the entry previous to x = 40 identical to it.

Interestingly, to be consistent with the rest of the "new" series,
the factor pair in our original x = 40 entry can be considered the
"reverse" of the new x = 40's factor pair, even though both are
41-41.
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Majority Rule

So, the "new" 1S although "derived," is preferable to the
"original" version because its internal attrlbutes are consistent
with those of all of the other 41-family series. Its values are
Stlll valid in the original context of a factor pair sequence for
x> + x + 41 outputs, which is essential if the "new" series is to
be anything more than a "laboratory" curiosity. The principle of
what holds for the majority constraining what must hold for the
exception is a powerful one for deciding which one of a choice of
otherwise equally viable alternative 1nterpretatlons should be
selected. This principle is called into play often in this work.

2S

Let us now look at Charts 2 and 3 in the same way. Without
listing here all of the row patterns, by looking at them 1n Chart
2 it becomes clear that there should be another column for "OS" on
the left of ﬂS. The x spacing coefficients would lead, moving left
from %S, to 1+, 1l¢; the op2 spacing coefficients point to a pair
with even-coefficient = 1 and coefficient-sum = 1%, therefore a
pair = 0+, 1¢; the op2;:41 values yield 1%2.41-0 = 41; the X,:41 row
extrapolates leftward to 2+41-1 = 81.

All of these extensions lead to %S being started by factor
pair 163 + 41. This is indeed the same series as in 41-family
series 2, gs, with the operands reversed in each factor pair. 1In
other words, instead of going 41-163, 41+167, 43+167, etc., here
the series goes 163+41, 167+41, 16743, etc. This explains why the
op2 spacing here equals the opl spacing there and vice versa.

3OS

With Chart 3, 5 similar effect causes us to derive a column
on the left edge, "oS " with x spacing = 1+, 2¢; op2 spacing_= Q;,
le; op2,:41 = 1%+41-0 = 41; and X,:41 = 3-41-1 = 122. This 7S
series starts with 367+41 and is the "reverse" of gS, which starts
with 41-.367.

Spacings of Spacings

The patterns in the rows in Chart 3 are a little more complex
than in Charts 1 and 2. For example, the sequence of x spacing
coefficients is:
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odd x spacing even X spacing
367-series coefficient coefficient
1 5
7
11
13
17
19 1

OOk WN
=30~

Table 23. x spacing coefficients for the %3 family.

Knowing the pattern of the spacings between these spacings

allows us to extrapolate. Those spacings between spacings can be
seen in the following:

odd x spacing even x spacing
367-series coefficient spacing coefficient spacing
1 5 1
2 4
2 7 5
4 -1
3 11 4
2 4
4 13 8
4 -1
5 17 7
2 4
6 19 11

Table 24. Pattern of ’S family x spacings.

By extending these relationships to 3@5 we can derive its
attributes' values, for example for x spacing, as follows:

odd x spacing even X spacing
367-series coefficient spacing coefficient spacing

0 1 2

4 -1
1 5 1

2 4

2 7 5

4 -1
3 11 4

Table 25. Extending the ®S x spacing pattern to series 0.
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x,:41 Coefficient vs. Sum of x Spacing Coefficients; op2,:41
Coefficient vs. Sum of op2 Spacing Coefficients

Given the attributes of a series family as described so far
in the charts, another aspect suggested itself. First, as listed
in the following tables, note how for each chart the x,+41
coefficient equals the sum of the x spacing coefficients for a
column. Also note how not only are the op2;:41 coefficient and op2
spacing coefficient sum for a column also equal, but that these
values are in each case perfect squares as well:

X spacing op2 spacing
Series x1:41 Coef. Coef.'s Sum op21:41 Coef. Coef.'s Sum

1 1 tecn 0

o 0%41-1 0O 1 0 0e41-¢-1) O 0 0
PO AR " 1 1041-0 1 2, 1
1 " 1 1. 4

125 2041-1 2 11 2 4ed1-1 4 )

5 3e41-1 3 ) 3 9e41-2 9 5

TS kel 4 = 4 16041-3 16 & 16
les 5¢41-1 5 ' 5 25¢41-4 25 0 25
1 i 1 1. 12

¢S 6e41-1 6 5 6  36e41-5 36 ” 36

Table 26. x1:41, X spacing, op21:41, and op2 spacing coefficient patterns.

X spacing op2 spacing
Series x1:41 Coef. Coef.'s Sum op21:41 Coef. Coef.'s Sum
208 211 2 ! 2 1e41- 0 1 0, 1
25 6412 6 ’, 6 91-2 9 & 9
25 100413 10 ¢ 10 25¢41- 6 25 20, 25
25 thedl-d 14 s 1% 49+41-12 49 “e. 49
2 18415 18 e 18 81+41-20 81 2 81
2 22e41-6 22 21 22 121441-30 121 ne . 121

Table 27. x1:41, X spacing, op21:41, and op2 spacing coefficient patterns.
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X spacing op2 spacing

Series x1:41 Coef. Coef.'s Sum op21:41 Coef. Coef.'s Sum
35 34113 ' 3 1e41-0 1 °, 1
35 w12 6 °, 6 hed1- 1 4 b 4
38 12413 12 7 12 16e41-3 16 8 16
3.5 154414 15 ", 15  25¢41- 6 25 20, 25
38 21415 21 B 21 49e41-10 49 2 49
35 240416 2 7, 26 64e41-15 64 “8 64
3 300417 30 Lo 30 100s41-21 100 € 100

Table 28. x1:41, X spacing, op21:41, and op2 spacing coefficient patterns.

Matchings Related

Looking at just what these perfect squares are the squares of,
it becomes clear that both of these match sequences for a chart,
for example the 3, 6, 12, 15,... and 1, 4, 16, 25,... sequences of
Table 28, are themselves intimately related. The numbers in the
X,:41 vs. X spacing match sequences are all divisible by a common
factor. When the square root of the numbers in the op2,:41 vs. op2
spacing match sequence has been taken, the resulting numbers are
identical to those in the other match sequence after division by
the common factor:

X,:41 Coef. op2,:41 Coef.
or X Spacing or op2 Spacing
Series Coef. Sum +1 Coef. Sum J
oS 0 0 0 0
.S 1 1 1 1
s 2 2 4 2
s 3 3 9 3
''s 4 4 16 4
55 5 5 25 5
&S 6 6 36 6

Table 29. The relation between the two match sequences.

29



%X;:41 Coef. op2,:41 Coef.

or X Spacing or op2 Spacing

Series Coef. Sum +2 Coef. Sum ./
%S 2 1 1 1
2

S 6 3 9 3
2.S 10 5 25 5
2.8 14 7 49 7
Zs 18 9 81 9
%S 22 11 121 11

Table 30. The relation between the two match sequences.

X;:41 Coef. op2,:41 Coef.
or X Spacing or op2 Spacing
Series Coef. Sum +3 Coef. Sum VA
;s 3 1 1 1
.S 6 2 4 2
88 12 4 16 4
;s 15 5 25 5
oS 21 7 49 7
255 24 8 64 8
&S 30 10 100 10

Table 31. The relation between the two match sequences.

The sequence that both match sequences share, for example 1,
2, 4, 5, 7, 8,... for the 367-family, is called "z." The number
that x spacing coefficient sums for a family are divided by is
simply the family number. This is called "v" as in ' S.
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Is There a Family of Families?

Is There a 653-series Family?

A natural gquestion, given the evidence for there being
families of factor pair series for 41, 163, and 367, was "Are there
an infinite number of such families?" If other such families could
be found, then the 1likelihood of there being such a family of
families would be strengthened.

The first logical step was to look for another family of
series, one involving 653. The sequence of 4l1-series starting
factor pairs goes 41¢1, 41-+41, 41163, 41-367, 41653, 41-1021,
etc. Since 41, 163, and 367 all had families, 653 seemed likely
to follow suit.

There were already a few components for a 653-family. 653+41
is simply a reversed version of the known series 41-653. 653+367
is the reversed version of 367+653. 6531021 had been established
earlier. What might other series be in a prospective 653-family?

From Array Construction to Pure Deduction

If it were simply a matter of generating enough further
anomalies, then Paul's program could churn out more of the prime
vs. composite visual points in x*> 4+ x + 41 and I could then
laboriously determine which of the composites were generated by
41-, 163-, or 367-series, and which composites were not, and were
therefore new anomalies. Some of those new anomalies might well
be 653-series members. In general, any such anomalies found would
be valuable data for determining any other series of factor pairs,
possibly even new families of series.

The search for more data was not done in this way, however.
I attempted to discover the new series and families through pure
deduction rather than through data analysis. This was not because
of the tedium of finding anomalies among familiar series'
offspring, but simply because we could no longer run Paul's program
due to our work climate limiting how much processing Paul was
allowed. And, given success with a pure deduction approach, we
would avoid the inevitable geometrically-growing tedium of hunting
down anomalies in ever larger, more intricately populated samples
of outputs of X + x + 41.

Of course, the pure deduction approach does work with data
somewhat, but often the data is the knowledge of whole series'
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attributes, rather than knowledge of individual factor pairs. Of
course, also, the data-driven approach of generating "raw" data in
the form of factor pairs, and then inducing (recognizing) patterns
in the data, thus does work with deduction somewhat. There is an
element of "generate and test" in the pure deduction approach as
will be seen shortly. The difference between the two approaches
is that in the pure deduction method both the data and the
deduction (or induction) are at a higher level of abstraction.
This higher level of operation can be vastly more efficient at
getting one to general, powerful conclusions, besides saving much
time-consuming raw data muck-wading.

The First Three 653-series

A first attempt to lay out how the 653-series might fit in a
family is depicted as follows:

4 4 4 4 4 4
ls ZS SS 4S 5S 6§
X, 163 489 816
ops 653-41 653+163 653367 653+1021 653+ 653+

Table 33. How the 653-series might fit into a family.

Unfortunately, 653163 cannot start a factor pair series since
it is not itself a factor pair! 1In other words, 653¢163
(= 106,439) is not an output of x* + x + 41.

Well, suppose that we revise the layout and fill in the

various attributes as in Chart 4.

653-series Four, Five, and Six

What might the fourth, fifth, and sixth starting factor pairs
be? What would these series' other attributes be?

Noting that the x,:41 coefficients for the three known series
are 4, 12, and 20, and that the op2,:41 coefficients are 1, 9, and
25, then z is 1, 3é and 5 for these three series, respectively (1,

9, 25 = 1%, 3%, 5% and 4, 12, 20 = 4+1, 4+3, 4+5). Taking an
educated guess that z for a fourth series in the sequence might be
7, the x,:41 coefficient would be 4+7 = 28, and the op2;:41

coefficient would be 72 = 49.
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The three known x,:41's are 4-41-1, 12-41-3, and 20+41-4.
What would the fourth be’ 28+41 minus what’ Oon the second try,
28+41-6 = 1142 yielded a valid output of x> + x + 41 that is
divisible by 653: 1,305,347 = 653+1999. This op2; value, 1999,
yields an op2;:41 value of 49-41-10.

Trying 9 for z for the fifth series, the x,:41 value would be
(4+9)+41-? = 36+41-7. After several attempts, 36°41-7 = 1469
yielded an output of x> + x + 41 divisible by 653: f£(1469) =
2,159,471 = 653+3307.

By now the pattern of x;:41's was plain. What gets subtracted
from 4z-41 varies by 2, then 1, then 2, then 1, and so on. The
sixth series' x;:41 could be derived immediately as 44-+41-9 = 1795.

Chart 5 contains the finished columns for 653-series four,
five, and six. Once all of these values are filled in, their
patterns are obvious. Before they are all filled in, however,
these values are far from obvious, let alone their patterns.

Initial Extrapolation Difficulty

To illustrate the filling-in process, take the fourth series.
What are its x spacing and op2 spacing values, given those of the
first three series? All that we know to start with is that the sum
of the x spacing coefficients equals the x,:41 coefficient, 28.
Similarly, all that we know to start with is that the sum of the
op2 spacing coefficients equals the op2,:41 coefficient, 49.
Trying to extrapolate across to the fourth column for any of the
individual spacing coefficients based on their sequences in the
first three columns is too tricky. For example, for the odd x
spacing coefficients the sequence goes 1, 7, 9, ?.

Guided Trial and Error

The only solution to finding these values is guided trial and
error. We know that series four starts 653:.1999. We also know
that the opl spacing for series four is 8+, 8¢, since that is what
it is for all 653-series. Therefore, x, = 661-?. By trying
1999+1, 1999+2, etc. for op2, we eventually succeed in finding a
result that is an output of x> + x + 41 when op2 is 2027. So, X,
= 661-2027. Similarly, since x, = 677-?, we keep going until we
find x; = 677+2069. And so on. In this way we discover both the
op2 spacing coefficients and the x spacing coefficients.
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Cross-column Patterns

Do we have to do the same thing for each succeeding series?
Only until we have enough data in our sequences across columns to
discern the cross-column patterns. For example, given column four,
our x spacing odd coefficients are now 1, 7, 9, 15, ?, ?. These
values go up by 6, then by 2, then by 6 again. If it turns out
that the value for column five goes up from that of column four by
2, then it is likely that we have our pattern. As one can see from
Chart 5, the odd spacing coefficient for series five is 17.

Even if we don't yet see the pattern for the even x spacing
coefficients, for example, we can deduce them given the pattern for
the odd coefficients and the knowledge that the sum of the odd and
even coefficients for a series equals the x,:41 coefficient for
that series.

The 1021-family

Rapid Projection of x,:41

Armed with the confidence of having deduced the 653-family of
factor pair series, the next venture, the prospective conquest of
a family for 102l1-based series, went swiftly.

The first three series in a 1021-family would start 102141,
1021+653 (a reversal of 653-1021), and 1021+1471. The ¥,;:41's for
series four, five, and six could be projected thanks to the
precedents set for coefficient and "subtrahend" spacings in the
first three four families as follows:

Coef.=+v Subtrahend
Segies X,:41 Coef. +v Spacing Subtrahend Spacing

1S 5¢41- 1 5 1 1

3 3
5,5 20+41- 4 20 4 4

2 1
%S 30+41- 5 30 6 5

Table 34. Known 102l1-series ¥X,;:41 values.
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Coef.=v Subtrahend

Series X241 Coef. +Vv Spacing Subtrahend Spacing

®'s 5¢41- 1 5 1 1

3 3
%S 2041- 4 20 4 4

2 1
%S 30+41- 5 30 6 5

3 3
°S 45+41- 8 45 9 8

2 1
s 55+41— 9 55 11 9

3 3
%S 7041-12 70 14 12

Table 35. Known plus projected 102l-series ¥x,:41 values.

The x,’s Pan Out, But...

The resulting predicted x;'s for series four through six,
1837, 2246, and 2858, could be easily tested for validity. If the
output of x> + x + 41 for each is divisible by 1021, then these are

very probably series-starting x's. £(1837) = 3,376,447 =
1021+3307. f£f(2246) = 5,046,803 = 1021-4943. £f(2858) = 8,171,063
= 1021+8003.

...Are They Really Series Seeds?

These results are encouraging, but further evidence is
required before one can conclude that these are series-starting
factor pairs. Subsequent factor pairs must stem from these "seed"
pairs. How can we tell what factor pairs might follow from each
prospective "starter pair"?

Beyond Trial and Error

We know what the opl spacing must be for any 1021-based
series, 10, 15-. So, we know what the opl operands for each
following factor pair must be. Given these opl values, we could
use trial and error to find successful op2 operands for each
succeeding opl value that together yield an output of x> + x + 41.
In other words, for series four, the next opl is 1031, so we could
hunt one-at-a-time for appropriate op2's until we hit 3343, which
with 1031 yields £f(1856). But, we don't have to use trial and
error.
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Projected op2 Spacing

Using similar analogizing as we did to deduce the x;:41
values, we can deduce the op2 spacing values for series four
through six:

op2 odd 0dd Coef. Even Even Coef.
Series Spacing Coef. Spacing Coef. Spacing
°.S ° 0 1
81 71

5 8
,S s 8 8
s 15 22 82
5S " 12 24

Table 36. Known 1021-family op2 spacing values.

op2 odd 0dd Coef. Even Even Coef.
Series Spacing Coef. Spacing Coef. Spacing
°.s ° 0 1
5 . 8«1 71
,S s 8 8
5 " 22 82
5S 24 12 24
5 56 83 73
4S 15 36 45
5 a4 24 8+4
5S . 44 77
5 a4 85 75
&S 11z 84 112

Table 37. Known plus projected 1021-family op2 spacing values.

Verified Predictions

Do these predicted op2 spacings fit reality? For series four,
given starting pair 1021-3307, the next pair would be 1031 (by
necessity) -+ 3343 (by prediction). 1031+3343 is indeed an output
of x) + x + 41. The next projected pair is 1061-+3433. 1It, too,
meets the test. Similarly, the projected pairs for series five and
six all succeed. Thus, once again deduction has come through.
Another reassuring point is that the predicted coefficients for op2
spacing in each series sum to a perfect square, and those perfect
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squares are indeed z?, as appropriate. The filled in chart for the
1021~-family appears as Chart 6.

Superfamily

It is now clear that we could go on and on 1like this,
generating new families of series at will. Is this the end? Have
we no more worlds to congquer? Hah! We have only scratched the
surface.
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Planes of Pairs

Cross-family Patterns

Given a pretty good sample of families of factor pair series,
we might now be able to see cross-family patterns.

'S’s op1 Spacing

Just as we once changed series S's op2 spac1ng from O+, 1-
to 2+, -1¢ due to pressure from the rest of the !S series' op2
spacings, we now see famlly Is's opl spacing is 0-, 1e¢, while the
rest of the families’ opl spacings go 4+, 0+; 6+, 3+; 8- 8+. This is
the identical situation that made us change HS'S op2 spacing from
0+, 1+ to 2+, -1-. Should we do the same thing here?

1.8’s op1 Spacing vs. op2 Spacing

Before answering this question, let us examine the issues very
carefully. We could change famlly Igrg opl spacing to 2., -1- to
fit the other families' opl spa01ng sequence. grg opl spacing, if
changed to 2+, -1+, would force S's op2 spacing back to 0-, 1-,
since they cannot both be 2-, —1-. Nor can both be 0., 1-. One
must be 2+, -1+ when the other is 0., 1¢. To illustrate, if both
were 2+, -1« we would get:

41-+41
2.1 2.1
43+43
=12 =1-2
41-41
23 23
4747
-1-+4 =14
43443
25 25
5353

Table 38. The opl and op2 spacings cannot both be 2., -1-.
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This is invalid, since these pairs do not yield outputs of X

+ x + 41. Likewise, if both spacings are 0-, 1-, the pairs are
invalid:
41-41
0-1 0-1
41-41
1.2 1.2
43+43
03 03
43443
1-4 14
4747
05 05
4747

Table 39. The opl and op2 spacings cannot both be 0¢, 1-.

An Alternative op2 Spacing Sequence for 'S

Changing ﬂS's op2 spacing to 0-, 1+ is not the dead-end that
it at first might seem to be. There /s a sequence starting with

0+, 1+ that can supply satisfactory op2 spacings for the !s family
of series:

O 4. 12 24 - 40-
1 O -3 —8 e =15 etc.

These alternative op2 spacings yield the same factor pairs
when coupled with an opl spacing of 2+, -1+ as do the more familiar
!s op2 spacings when coupled with 0., 1s. The difference is that
the sequence of op2's now goes up and down for 3S and above. Only

1S and 53 have non-up-and-down op2's With the original op2
spacings, only 1S has up-and-down op2's, the rest of the series!'
op2's are strictly increasing (or at least non-up-and-down, as with
L8):
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2e be be 8e 10 12¢

-1e Qe 3e 8e 15 240
41041 414163 41367 410653 411021 411471
Oe1 21 be 6e1 8e1 10e1 1201
41043 41167 41373 410661 411031 4101483
1e2 -1e2 0e2 32 8e2 152 2402
4341 43167 43379 43677 431061 431531
03 23 4e3 63 8e3 103 123
43047 43179 430397 43701 431091 4301567
1e4 -1e4 04 3e4 8e4 154 2494
47043 47179 470409 47733 471151 471663
0e5 25 45 65 8e5 105 1295
4753 47199 47439 47773 471201 4701723
1e6 -1e6 06 306 8e6 156 2496
5347 53199 53457 53821 531291 531867
Table 40. 18 with original op1 and op2 spacing (opl1 spacing = Qe, 1e).

Oe be 12 24 40e 60+
Te Oe -3e -8e =15 -24e
41041 41163 41367 41653 411021 411471
2+1 01 4o 121 241 401 601
43041 430167 43379 43677 431061 431531
~1e2 162 0e2 -3e2 -8e2 -15¢2 -24e2
4143 41167 41373 41661 411031 411483
243 0e3 4e3 123 2493 40e3 603
4743 470179 47+409 47733 471151 471663
-1e4 14 04 -3e4 -8e4 -15¢4 -24e4
43047 43179 43397 43701 431091 431567
2¢5 0e5 45 1245 245 4005 605
5347 53199 53457 53821 531291 531867
-1e6 166 0e6 -36 -86 -15¢6 -2496
4753 47199 47439 47773 471201 471723
Table 41. 1S with alternative opl and op2 spacing (op1 spacing = 2e, -1e).

Family or Superfamily: Which Should Switch?

Why didn't we switch to this sequence earller, when we saw
that 0+, 1¢ didn't fit in with the rest of the s op2 spacings?
Because it was much easier to change one exception to fit the rule
than to change all cases except the exception to fit the exception.

Would we reconsider that decision now? Very possibly, in the
llght of what we are about to acknowledge. To recap, if we change
Isrs opl spacing to 2-, -1- to fit the cross-family opl spacing
sequence, then we must change S's op2 spacing to 0+, 1l to work
with its opl spacing of 2+, -1-. This change of S's op2 spacing
ba51cally forces, by domlno effect, the changing of the rest of the
s family's op2 spacings to that new sequence that starts with O-
1-. The net effect of this change is that the op2's of all S
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series, from gs on, go up and down (an admittedly less "natural"
way to list factor pairs than the original way).

The other alternatlve to changlng' Isrs opl spacing to 2+, -1
is to leave all of 'S's op2 spa01ngs unchanged and to change all of
the other families’ opl spacings, via domino effect, to the same new
sequence that starts w1th O+, 1-. This would make all series
within all families from *S on up have opl spacings that go up and
down. The up-and-down effect in this latter case is much more
severe, applying not just within one family but across all but two
families. The choice is clear- cut The lesser of the messier
situations is preferable: change Isrg op2 spa01ng to 0+, 1« and
ripple that change up through the rest of the g family's series.

Messy Perfection?

Can the perfection of nature be so messy? This "messiness"
is merely inconvenience, not disorder. We are confronted by, or
if one prefers, treated to, an example of two equally valid
alternative interpretations of one reality. This is reminiscent
of the duality of the electron, "simultaneously" wave and particle,
though the key is not so much that it is simultaneously both but
that it is one or the other depending on context and therefore
possibly "actually" neither per se, possibly something with at
least those two faces for those two contexts yet with possibly
other faces still.

We are inconvenienced by having two alternative descriptions
and by having up-and-down number sequences soiling our otherwise
normal number scenery.

Remember when we said that alternative numberings would come
up again? Well, they have. And so they shall yet again.

The First Family Revised and Revisited

The impact of these changes to the !S family reaches to the x;
spacings as well. The alternative chart for the !s family, where
the opl spacing is 2+, -1+ appears in Chart 7. Notice that there
is no impact on the xl's, the sums of the x spacings, the sums of
the op2 spacings, nor the op2;:41 or x;:41 values.
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X;:41 and Further Revision

When we list the values of the x;:41 coefficients for the
known series, for the known families, not only is there an
interesting pattern -- some new knowledge is gained which changes
our understanding of the 41- and 163-families. The x,:41
coefficient for a series, as a reminder, is equivalent to the sum
of the x spacing coefficients for that series, and both are equal
to vez. Remember that the x;:41 coefficients for each series were
all multiples of the same number, the family number, and that z was

the result of dividing each such coefficient by that common factor,
V.

x;:41 Coefficients

Table 42 gives the x;:41 coefficients for the first five
series for each of the five known series families:

Family (v) - 1 2 3 4 5

Series (z)

1 1 2 3 4 5
2 2 6 6 12 20
3 3 10 12 20 30
4 4 14 15 28 45
5 5 18 21 36 55
Table 42. The x,:41 coefficients for the five known families.

Coefficient Spacings

Table 43 expands on Table 42 by including the spacings between
the listed values:
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vV ==> 1 2 3 4 5
1 2 3 4 5

1 4 3 8 15
2 6 6 12 20

1 4 6 8 10
3 10 12 20 30

1 4 3 8 15
4 14 15 28 45

1 4 6 8 10
5 18 21 36 55

Table 43. x;:41 coefficient spacing for the five known families.

Rewrite Inspired by op1 Spacings

One way to look at these spacings is to consider those of
families one, two, and four nice and constant while those of
families three and five are a little messy, alternating between two
values. The trained eye, however, will quite possibly notice that
the two alternating values for families three and five remind one
of some other paired values. The alternating values here, 3 and
6, and 15 and 10, remind one of the opl spacing coefficients for
families three and five, 6+, 3+ and 10, 15.. Add to that the fact
that family four's pair of eights can also be seen as the "reverse"
of family four's opl spacing coefficients, 8., 8+, and a pattern
starts to emerge.

If this is more than coincidence, then how would families one

and two fit in? Their opl spacing coefficients are 2+, -1+ and 4.,
O+ respectively. The coefficients sums for families one and two
are 1 and 4. These are the spacings for families one and two in

Table 43. So, let us rewrite Table 43 with 2, -1 and 4, 0 in place
of 1 and 4, respectively:

v —-=> 1 2 3 4 5
1 2 3 4 5
2,-1 4,0 3 8 15
2 6 6 12 20
2,-1 4,0 6 8 10
3 10 12 20 30
2,-1 4,0 3 8 15
4 14 15 28 45
2,-1 4,0 6 8 10
5 18 21 36 55
opl 2. 4. 6 8- 10
spacing -1- O 3. 8« 15

Table 44. Table 43 with (2,-1) and (4,0) in place of 1 and 4.
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Reversed Pairs Come Closer

Does this help any? Well, we have got "funny" spacings with
value pairs instead of single values for families one and two.
Since the alternating values for the spacing for families three
through five are in reverse order from the opl spacing
coefficients, we should probably swap the two values in each
spacing for families one and two as follows:

vV _=-=> 1 2 3 4 5
1 2 3 4 5
-1,2 0,4 3 8 15
2 6 6 12 20
-1,2 0,4 6 8 10
3 10 12 20 30
-1,2 0,4 3 8 15
4 14 15 28 45
-1,2 0,4 6 8 10
5 18 21 36 55
opl 2. 4. 6 8. 10+
spacing -1 0 3. 8. 15

Table 45. Table 43 with (-1,2) and (0,4) in place of 1 and 4.

Further Reconciliation

Is there any way to further reconcile families one and two
with the other families? What if we get a little risqué and spread
the (-1,2) and (0,4) pairs out as two single spacings each, as in:

-1 0 3 8 15
2 4 6 8 10
-1 0 3 8 15
2 4 6 8 10

Table 46. Spreading (-1,2) and (0,4) out into two values each.
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Restructured Coefficient Sequences

What sense could these spacings possibly have for families one
and two? The values separated by these spacings would have to
change. Instead of 1, 2, 3, 4, 5, etc., family one's X,
coefficient values would become:

1

-1
0

2
2

-1
1

2
3

-1
2

Table 47. Family one's revised x, coefficient values.

Family two's values would become:

2

0
2

4
6

o
6

4
10

0
10

Table 47. Family two's revised x;, coefficient values.

These at first outlandish sequences can be seen at second
glance to contain all of the values of the original versions of the
sequences, only in every second position now. In other words, the
first, third, fifth, and so on numbers in family one's new sequence
are 1, 2, 3, and so on.
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Implications of Revised Sequences

What are the implications of using such sequences in the
charts for families one and two? Can it be done with results still
meaningful? Yes. The number of series in both families doubles,
or more accurately, an unexpected new series gets inserted between
each of the previously accepted series.

Inserted Series and the New First Family

The "new" family one is analyzed in Chart 8, while the "new"
family two is detailed in Chart 9.

Are There New Factor Pairs?

With these new "inserted" series, are there any new factor
pairs to be found?

The first new series in family one, the series that starts
with the factor pair 411, is the only series with any factor pairs
not actually seen in previously known series. In other words, the
rest of the inserted series in family one generate factor pairs
already known of from the already known series in family one. For
example, the new series that starts 41-43 generates:

4143
4347
4141
4753
4341
5361

47+43
Table 48. The new, inserted series that starts 41-+43.

These factor pairs are the same as those generated by the
series beginning with 41-41, only rearranged in sequence:
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41-41

0.1 21
4143
12 —1e2
4341
0-3 2+3
4347
1.4 -1-4
47443
0+5 2+5
4753
1.6 -1-6
5347
etc.
Table 49. The factor pairs in the series beginning with 41-41.

This same effect of "nothing really new" occurs with the other
inserted series in family one. The inserted series in family two
are even obviously not going to contribute any new factor pairs -
- these series are exact copies of their lefthand neighbors.

The First Inserted Series

So, only the first inserted series in family one yields
previously unseen factor pairs. Just what are these factor pairs?
Well, since the op2 spacing for the series is 0-, 0+, every op2 in
the series is 1! The opl's are none other than x’ + x + 41, from
X = 0 on up, albeit via a stutter-step:

41-1
43-1
411
471
431
531

etc.

Table 50. The factor pairs in the series starting with 41-1.
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These factor pairs need to be seen in a special light. The
original search for factor pairs was in the context of finding the
factors of composite outputs of x2 + x + 41, Having 1 as a "factor"®
yields not only all of the composite outputs of x> + x + 41 but all
of the prime outputs as well! So, in this sense, these special
factor pairs are "uninteresting," yielding "trivial" factoring
information.

Nevertheless, going through the exercise of expanding families
one and two to conform to the format of the other families with
respect to x;:41 coefficient spacings yields a consistency across
all of the families that in turn provides a certain security to
build upon. Not only are all of the x,:41 values now aligned, but

the z's and other parameters are also now in step across the known
families.

Other Family Charts

Charts similar to those of the first five families were now
prepared for a few more families. This was straightforward, given
the clarity of the patterns across families.

The First Superfamily

Families as Columns, Series as Points

It was now natural to summarize the families in one table
representing each family in a column, with each series in a family
represented only by its starting factor pair. This table in effect
gives a glimpse of a superfamily:

1S 28 38 4S 5S 65
41 41 163+ 41 367 41 653« 41 1021 41 1471« 41
41 1 163« 41 367+ 163 653« 367 1021 653 1471« 1021
419163 163+ 367 367+ 653 6531021 10211471 1471 2003

41« 43 163« 367 3671019 6531999 10213307 1471 4943
41367 1631019 3671999 6533307 10214943 1471 6907
41167 1631019 36792609 65394937 10218003 147111807

OV WN =2

Table 51. The family of families of series of factor pairs.

Thorough Cross-family Pattern Analysis

Looking for patterns here, we see that the opl's are all
familiar: 41, 163, 367, 653, 1021, etc. So, the items of interest
here, if any, will involve the op2's.
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Two Series-starting Factor Pair Patterns

Two patterns become evident. First, a factor pair in row 3
appears again reversed in row 2 of the column immediately to the
right. For example, row 3 of column S contalns 41163 while row
2 of column 2s contalns 163+41. Row 3 of column 2S contains 163+367
while row 2 of column %S contains 367:163. And so on.

Second, the right-hand factor (op2) in row 5 of each column
is the same as the op2 in row 4 of the column to the rlght For
exampleé op2 in row 5 of column !s is 367 while op2 in row 4 of
column “S is also 367. (Technically, these op2's are op2,'s, the
first op2's in a series in each case.)

Predicting Starting Pairs

Formulas vs. Insight

Suppose that we wanted to predict the factor pairs in some
column of the superfamily table. We could derive a formula for
each individual family. We could then try to come up with a more
general formula that works for all families. We might also note,
however, that given the first three factor pairs in a column here
the rest of the column can be generated. And, we can predict what
the first three factor pairs in a column are.

The First Three Entries Per Column

Generating the Rest of the Column

First, how can we generate the rest of a column from its first
three entries?

Constant op1,

We know that the opl for all entrles in a column is constant.
For example, for all entries in column 3S the opl is 367.
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op2, Spacing

It just so happens that the op2;'s in a column follow our by
now familiar odd-and-even spacing theme:

entry 1
+ odd spacing coefficient « 1
entry 2
+ even spacing coefficient « 2
entry 3
+ odd spacing coefficient - 3
entry 4
+ even spacing coefficient -« 4
entry 5
etc.

Table 52. op2;, spacing for a column: odd and even spacing again.

To illustrate, take column %S. Its factor pairs' op2's are:
41
= 326 = 3261
367
= 654 = 3272
1021
= 978 = 326+3
1999
= 1308 = 3274
3307
etc.

Table 53. Factor pair op2's for column ‘s.

Predicting the First Three Entries

opl,’s

How can we predict the first three entries in a column? We
know that their opl,'s are a particular odd op2, in family one (!s):
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s 1
Opl; = "»5.,0P2,;

For example, ‘opl; = ',0p2, = 653.

The First Three op2,’s

What are the first three op2,'s, then, in a column? The first

is always 41. The second is the odd !s op2; before this column's
opl The third op2; is the odd g op2, after this column's opl in
s. For example take column °S. TIts opl, 1s the 9% op2 in S its

first op2, is 41, 1ts second op2 is the 7" op2, in 1]'S and its

third op21 is the 11t op2; in s,

An Example

Let us work through an example. Let us generate the first
several entries in family s (column S) opl1 will be op2, of 1%7_
1S = 13S We need a formula for op2; of /S where w is odd. The

data for generating such a formula are:

1

w Wy op2, op2,:41
1 41- 41 41 1-41-0
2 41« 1 1 0+41+1
3 41-163 163 4+41-1
4 41- 43 43 1.41+2
5 41-367 367 9+41-2
6 41-167 167 44143
7 41653 653 16+41-3

Table 54. Data to help in generating a formula for op2, for ! s.

w
We can see that op2, of ! S where w is odd is:
[(w+1)\2%2]2 e 41 - (w-1)=2
To verify this, if w = 7, this yields 653.
So, opl; of s = ', = 2003. op2, of ';S = 41, op2, of ,5 = ! 8

= 1471, and op2, of 48" = 1,8 = 2617. So, the first three entries
in column 7 are:
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2003 41
2003+1471
2003+2617

Table 55. The first three entries in column 7.

The op1 Spacings

We can now derive the op2, spacings: odd spacing = 1471 - 41
= 1430, even spacing = (2617 - 1471) + 2 = 573. The column
therefore begins:

2003~ 41

1430-1
2003« 1471
5732
2003+ 2617
1430-3
2003+« 6907
5734
2003+ 9199
14305

2003+16349
etc.

Table 56. The beginning of column 7.

Please remember that these columns in the superfamily table
are not series of factor pairs, but series of starting factor pairs

for series of factor pairs. In other words, each factor pair
listed here represents a whole series of factor pairs. It is the
first factor pair in the series that it represents. So, 200341

represents a whole series of factor pairs, 2003+1471 represents
another series of factor pairs, and so on.

Are "Impure" op2,’s Seeds, Too?

A natural question to ask when looking at Table 51 is "Are the
op2,'s other than those in the first three rows capable of being
family "seeds," as the op2,'s in rows 1-3 have been?" For example,
the op2;'s in rows 1-3, familiar numbers such as 41, 163, 367, and
so on, all appear as opl,'s for a whole family. Thus they are
"seeds." Can "impure" numbers that appear as op2;'s in Table 51,
such as 1019, 1999, 3307, and so on, also serve as opl,'s? The
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familiar numbers all occur as op2;'s in s and satisfy the formula
n®.41 - (n-1). The "impure" numbers do not meet either
qualification.

Why ask? Because if the familiar, "pure" numbers are the only
family seeds, then we now know the extent of the families --each
has one of the n®-41 - (n-1) numbers as its opl. If these are not
the only seeds, then there is much more to look into.

1019

Other "Pure" Partners

I decided to try to see if 1019 is a seed. 1019 does appear
twice in series starters: 163+1019 and 367+1019. What other
series-starting factor pairs might 1019 be in? We might first try
"pure" numbers as partners for 1019 and if they do not pan out then

try numbers slightly less than the "pures." For example, we could
try 6531019, 1021-1019, 1471+1019, 2003-1019, 2617-1019, and so
on. These do not work. One has a feeling that these partners

cannot work, since 1019 is bypassed in each of their sequences in
Table 51.

Providing Guidance in the Search

Rather than rather blindly searching for success that we do
not even Kknow is there, it would be good if we tried to provide
some guidance to the search. Are there any hints in what data that
we do have that might help narrow the field of candidates?

A Start on a Chart

Well, starting a chart for a prospective 1019 family, we have
two entries so far, a column for 1019163 and one for 1019-367 (see
Chart 10).

Candidate Common Divisor of x,:41 Coefficients

Noting that the x;:41 coefficients, 10 and 15, have 5 as a
common denominator, raises the possibility that 5 might be the
common divisor for the whole 1019-family, if such a family exists.
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"Pure" Family Common Divisors

Reinforcing that possibility is the fact that the common
divisor of the x,:41 coefficients for the known, "pure" fami}ies is
the square root of the coefficient of op2;:41 as well as being the

"family number," v. To illustrate:
Family
Number (= v) opl opl:41 Jcoef. of opl:41
1 41 1-41-0 1
2 163 4+41-1 2
3 367 Se41-2 3
4 653 16+41-3 4
5 1021 25+41-4 5
6 1471 36+41-5 6
Table 57. Pure family number vs. x,;:41, op2;:41 coefficients.

1019 = 25+41-6. It is therefore reasonable to suggest that

v for a 1019 family is 5. Here v might at least mean common
divisor of x,:41 coefficients (and x spacing sums), if not "family
number."

Strategy for Finding Suitable x,’s

So, getting back to 10 and 15 being divisible by 5, other

1019-family x,:41 coefficients might well be divisible by 5 as
well. Since these are x,;'s that we are constraining to be
approximately a multiple of 5 times 41, we can search by trying
candidate x,'s.
We need to apply x> + x + 41 to these candidate X,'s and then
try dividing the result by 1019. If the result is divisible by
1019, then we succeed, and we find out what the other factor in the
factor pair is.

Testing x, Candidates

We can first try candidate x;'s near 20+41 = 820 because 20 is
the next multiple of 5 after 15; i.e., we can try £(820), £(819),
f(818), etc. None pan out. Next are candidate x;'s near 25-+41 =
1025. None pan out. Ditto for candidate x;'s near 30+41 = 1230.
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f(1426)

With candidate X,'s near 35+41 = 1435, however, we succeed.
f£(1426) = 2,034,943 = 1019-1997.

Does f(1426) Start a Series?

We Know 1019’s Spacing

We still have to determine if this factor pair starts a whole
series or is just an isolated pair. Fortunately, this task is
converted from another blind, possibly fruitless search to a simple
exercise by realization that we know 1019's spacing from the other
two known 1019-series, 20+, 5-. So, we need only find 1997's
spacing and we are all set.

1997’s Spacing

Do we have any information on that? Yes. We know that z for
the 1019-1997 series would be 7 since the x,;:41 coefficient is 35
and the common divisor of those coefficients is 5, and those
coefficients equal ve-z. We also know that the sum of the op2
spacing coefficients for a series is z?. So the sum of op2 spacing
coefficients for a sequence with 1997 as op2; should be 72 = 49.

x Spacing Constraint

We also know that the sum of the coefficients for x spacing
equals vez = 35. So, even using trial and error, if we increment
x from x;, (1426) and do not get a successful factor pair by the
time that we reach X, + 35, then we know that we can give up.

f(1455)

Using what we know, therefore, f(x,) = 10191997, and f(x,)
would be 1039+? where x, < X; + 34 = 1460. Also, "?2" < 1997 + 48
= 2045. Using a pocket calculator, we can determine that success
occurs on X, = 1455. op2, = 2039. So, the second factor pair =
1039-2039.
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Deducing the Rest of the Series

Given this second pair and the known spacing coefficient-sums,

we can deduce the rest of the series. Since the sum of the x
spacing coefficients is 35 and the odd coefficient is 29 (1455 -
1426), the even coefficient must be 6. Similarly, since the op2

spacing coefficients sum to 49 and the odd coefficient is 42 (2039
= 1997), then the even coefficient must be 7. To illustrate:

f(1426) 1019+1997
29-1 20-1 421
£(1455) 1039+2039
62 52 742
£(1467) 1049+2053

Table 58. The series started by f(l426).

f(1467)

Is £(1467) indeed 1049-2053? £(1467) = 2,153,597. 1049+2053
= 2,153,597.

The Rest of the Family

Given three established 1019-series, we can now deduce the
rest of the 1019-family. Based on experience with the other family
charts, given the first three z's we can deduce the rest. Here
they are 2, 3, and 7. Their spacings are 1 and 4. The next z
would be spaced 1 and the one after that would be spaced 4. 1In
other words, the 1019 z's would go: 2, 3, 7, 8, 12, etc.
Similarly, the x spacing coefficients, the op2 spacing
coefficients, the op2,:41 coefficients and subtrahends, and the
X,:41 coefficients and subtrahends all follow regular patterns
predictable given the first three series in the family. See Chart
11 for the 1019-family.

The Door is Open

Now that we have established that there is a 1019-family, based on
an "impure" number, the door is open for whole new sets of
families. What might some of these others be?
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Fourth and Sixth op2,’s

3S’s

The 1019-family's fourth op2; is 2609. Noting in Table 51
that 2609 is 3S's sixth op2, and 1019 is °S's fourth op2,, the
question arises as to any other such pairings of fourth and sixth
op2,'s in one family's series-starter sequence as series-starting
pairs in other families.

S’s

!sts fourth and sixth op2,'s are 43 and 167. They can be seen
to start a series, although it is not part of a previously
recognized family. Values that work are: x spacing = 7+, -5+, op2
spacing = 12+, -8+, and opl spacing = 4+, -3-.

2S’s

’s1s fourth and sixth op2%'s, 367 and 1019, start 331s fourth
series. And, 1019 and 2609, °S's fourth and sixth op2;'s, start
1019's fourth series. Is the 43+167 pair perhaps the start of some
family's fourth series? It would be a 43-family, we can safely
say.

4S’s, 5S’s, and °S’s

What about *S's fourth and sixth op2,'s, 1999 and 49372 Do
they even yield an output of x> + x + 41 when multiglied together?
Yes. 1999¢4937 = 9,869,063 = £(3141). What about ’S's fourth and
sixth op2,;'s? 33078003 = f(5144). 6s's fourth and sixth op2,'s
are 4943 and 11807. 494311807 = £(7639).
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Series-starters All

These other factor pairs actually do start series:

X 44op2-4eop2
3141 19994937
43.1
3184 20275003
34.2
3252 2069+5113
X Zop2~iop2
5144 33078003
551
5199 33438087
712
5341 3433-8311
X 6,0p2+%0p2
7639 4943+11807
671
7706 4987+11909
1202
7946 5141+12283

Table 59. Series started by pairing the fourth and sixth op2;'s

Other op2, Pairings?

Fourth and Seventh or Eighth?

Would other‘ pairings of Table 51 op2;'s also yield valid
outputs of x> + x + 41 and therefore be pos51ble series-starters in
as yet unknown families? Pairing fourth and seventh op2;'s of a
family's starting pairs does not succeed. Nor does pairing fourth
and eighth op2,'s
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Other "2-apart" op2,’s?

What about other "2-apart" op2,'s, such as the fifth and
seventh? Yes, these all succeed. For example 3S's fifth and
seventh op2;'s yield 1999-4079 = £(2855), and even 33's sixth and
eighth op2;'s yield 2609:4933 = f(3587). Al 2-aparts work for 33
(41653, 163+1019, 653+1999, etc.). All 2-aparts also work for ‘s.
In fact, all 2-aparts work, period!

2-aparts

What shall we make of this startling development? Let us
depict this effect, to start off with. Picking a given Table 51
family column, for example the 33 column, we are seeing the
following series-starting factor pair generation effect:

3

S Op2,-0p2, op2,.0p2, op2,+0p2, Op2,°0p2,
367 41— 41653 163+1019 6531999 10192609
367« 163
367+ 653
3671019
367+1999——
3672609
etc.

Table 60. 2-aparts generating series-starting factor pairs.

Generating Columns from Column 1, Revisited

Reminded of our discussion of generating the rest of Table
51's columns from its first column's first, third, fifth, seventh,
etc. op2,'s, let us revisit that topic before returning here.

Even-numbered Column 1 op2,’s

If all alternate (2-apart) op2,'s in a superfamily column
generate series-starting factor pairs, then the even-numbered
op2,'s in the s column, bypassed in the earlier discussion of
column generation from the s column, need to be taken into
account.
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"Even" Columns Generated

By following the same procedure for generating columns as was
used earlier, the following "even" columns would be generated:

1-41 43+ 41 167« 41 373+ 41
141 43. 1 167+ 43 373« 167
1-43 43167 167+ 373 373+ 661
1-43 43+ 47 167+« 379 373+1039
147 43+379 167+-1039 373-2027
147 43+179 167+1049 3732657
Table 61. Generated "even" columns.

Are These Pairs Outputs of x> + x + 41?

Are these pairs actually factor pairs, and if so, does each
start off a whole series of factor pairs? The answer to both
questions is yes.

As far as these pairs being factor pairs, i.e outputs of x? +
X + 41, we have already seen the pairs in the first even column,
as the pairs generated by !sSts second starter- -pair, 41-1. The
pairs in the second, third, and fourth "even" columns in Table 61
are not so obviously Valid factor pairs, but this can be quickly
verified by simple calculation. For example, is 373-2027 an output
of x + x + 417

Formula for Finding if a Pair is an Output of x> + x + 41

It should be mentioned that there is a simple formula that can
determlne if a pair of numbers, when multiplied, yields an output
of x> + x + 41. If the two numbers are "a" and "b," then if a*b =
x> + x + 41 for a whole number ¥, then

(4ab - 163)* -
———————————————— is whole (and equals x).
2
(4°373+2027 - 163)% - 1
For example, —-———————-—————memmmmm = 869
2
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S50, 3732027 = £(869). To verify this result, simply plug 869

into x* + x + 41. This yields 756,071. 373+2027 = 756,071.

The Derivation of the Formula

The formula was derived using the general solution
quadratic equations:

if y = ax? + bx + ¢

and given the general quadratic solution for x when
ax? + bx + ¢ = 0:

= e for y = x> + x + 41

61
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Since y here is men,

+ (4mn - 163)7 -

A Choice of Solutions

Notlng that there are actually two solutions for x dependlng
on the sign of (4mn - 163), we will work with the positive version
of (4mn - 163). The negative solution glves an alternative x that
also generates a particular output of x> + x + 41. For example,
although X = 4 generates the output 61, x = -5 also generates 61.
This is another example of the ch01ce of interpretations that
permeates this subject.

Are These Pairs Series-Starters?

Getting back to our discussion of "even" columns, we can see
that the pairs generated to form these columns as shown in Table
61 are factor pairs producing valid outputs of x? + x + 41.

Familiar Series in Disguise

What about these factor pairs starting series? If we look
carefully at some of these prospective series starters, for example
167+373 and 167-379, we will realize that these are pairs already
seen in other series. The series that starts off 163+367 next
contains 167+373 and then 167-379. By appropriately manipulating
167373 or 167379 we can show that they start the same series that
163-367 does, only with the pairs in the series rearranged:

Table 62.

163367 167+373 167+379
167373 163367 163367
167379 179397 179+409
179397 167+379 167373
179409 199-439 1994457
199+439 179+409 179397

62

167373 and 167+379 start series that echo 163+367's



Why Bother?

This same phenomenon applies to all of the factor pairs in the
"even" columns -- they start series that we have already seen via
the "odd" columns, Jjust rearranged in sequence. Why bother
delineating the even columns, then? For the same reason that we
included the even-numbered factor pairs in s to begin with, for
completeness and consistency.

Revising the Superfamily

If we acknowledge these even columns being generated from the
s column as helping to form the list of superfamily columns, then
we can return to the discussion of all alternate op2,;'s of a column
generating series-starters and know that this ties into the s
column generating the rest of the Table 51 superfamily. All that
we need to do first is to revise our superfamily to make room for
the even columns. The insertion of even columns between existing
columns, surely reminiscent of the insertion of new columns between
existing columns of information in our family 1 and 2 charts
(Charts 8 and 9), leads to the expanded superfamily portrait below:

47 41 | 41 41 141 163« 41 43« 41 367« 41 167« 41 653« 41
41« 1 | 41« 1 1e41 163« 41 43« 1 367« 163 167« 43 653 367
410163 | 410163 143 163 367 43167 367+ 653 167+ 373  653+1021
410 43 | 41e 43 143 163« 367 43 47 3671019 167« 379 6531999
410367 | 41367 1647 1631019 439379 3671999 1671039 6533307
410167 | 41167 1647 16341019 430179 3672609 1671049 65344937
410653 | 414653 153 1631997 43677  367+4079 1672039 6536899
410373 | 410373 153 1631997 43397 3674933 1672053 6539181

Table 63. Portrait of the expanded superfamily.

Renaming Original Columns

One consequence of this revision is that our names for the
original famllles, such as 1S, 2S, 3S, and so on, are no longer
appropriate. s is still S but 28 is now the thlrd column and
family, so it should be renamed to ’s. 014 *s is now S, old *s is
now ‘S, and so on. This is not that bad an adjustment. It can be
chalked up to growing pains. We must Keep up with the times.
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Back to 2-aparts

Column Generation Analogous to That From 'S

Now, returning to alternate op2;'s in Table 51 colunns
generating series starters, can whole series-starter columns, not
just s1ngle serles starters, be generated in a fashion analogous
to that in which !S generates the whole family of columns in Table
63? Yes.

Building Whole Families of Child Columns

If we treat any Table 51, or now Table 63, column as a
"parent" column like the s column can be, then, by using the same
construction method, we can build a whole family of "child"
columns.

The Construction Method

To review, the construction method is to populate the first
three series-starting factor pairs in a child column. These three
pairs are sufficient to generate the rest of a column.

The first pair in child column n consisted of the parent opl,
as the child op2;, and the n™ odd parent op2, as the child opil,.
With the new, expanded concept of the superfamily, this latter
mapping becomes: the n't parent op2; is the child opl,. For example,
previously the 163-column was column 2 and it took its opl; from
the parent column's second odd op2;, 163 (the third op2, overall).
Similarly, the 367-column, formerly column 3, took its opl; from
the parent column's third odd op2,, 367 (the fifth op2, overall).
Now the 163-column is column 3 and the 367-column is column 5.
They Jjust take their opl;'s from the parent column' third and
fifth op2,'s, respectively (the n'h op2,; instead of the n*® odd op2,) .

The second pair in child column n, in the old countlng, had
the (n- l) parent op2, as its op2,. Now it has the (n-2)”" op2, as
its op2,. 1Its opl; as well as the third pair's was, and remains,
the same as the first pair's opl, (opl, is constant for a family's
column) .

The thlrd pair's op2, was the (n+1) parent op2;,. It is now
the (n+2)" parent op2;.

To recap what the method is now:
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For child column n series-starting factor pair 1:

opl, parent-column series-starting factor pair n op2,

op2; = parent column opl,

For child column n series-starting factor pair 2:
opl, = parent-column series-starting factor pair n op2,

op2;,; = parent-column series-starting factor pair n-2 op2,

For child column n series-starting factor pair 3:
opl, = parent-column series-starting factor pair n op2,

op2,; = parent-column series-starting factor pair n+2 op2,.

An Example

Planes

As an example, let us generate a superfamily table from the
367~column of the original superfamily. Another name for a
superfamily, or endless list of endless column-lists, is a "plane"
of series-starting factor pairs. From here on we shall use the
term "plane" to mean superfamily. So, our original superfamily is
"the first plane," while any "child" superfamilies, generated from
columns in the first plane, are "child planes."

First Pairs First

Let us begin building the child plane based on first-plane
column 5, the 367-column, by filling in the first series-starting
factor pair in each child column:

Parent 1 2 3 4 5
367« 41 41 367 163 367 653 367 1019« 367 1999« 367
367« 163
367« 653
3671019
3671999
36792609
3674079

Table 64. Generating the first series-starters in child plane columns.
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Note the pattern of child opl,;'s. Also, note that all of the child
op2,'s are the parent opl;.

Second Pairs

Now let us fill in the second series-starting factor pair in
each child column:

Parent 1 2 3 4 5

367+ 41 41e 367 163+ 367 653 367 1019« 367 1999« 367
367« 163 47e 163 163+ 41 653« 41 1019+ 163 1999+ 653
367 653
3671019
36721999

3672609
36724079

Table 65. Generating the second series-starters in child plane columns.

Parent Pairs Numbers -1 and 0

Note that the opl,'s remain constant within a column. Also,
the child op2;'s in child column n's second series-starting factor

pair equal parent pair n-2's op2;. Doesn't this mean that child
column 1's second op2, comes from parent pair -1? And child column
2's second op2, from parent pair 0? Yes. These parent pairs are

meaningful and do indeed have the correct values for our purposes.
By backtracking from the first few wvalues in the parent-pair
series, we can see what values pair -1 and pair 0 have:

Parent Pair ¢ Parent Pair op2 Spacing
-1 367163
122+-1
0 367 41
2450
1 367 41
1221
2 367163
24542
3 367653

Table 66. Backtracking to parent pairs -1 and O.
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Third Pairs

Continuing with our example, we now fill in the third series-
starting factor pair in each child colunn:

Parent 1 2 3 4 5
367 41 41e 367 163¢ 367 653 367 1019« 367 1999« 367
367+ 163 41e 163 163 41 653« 41 1019+ 163 1999¢ 653
367« 653 41 653 1631019 65301999 10192609 19994079
36741019
3671999
3672609
3674079

Table 67. Generating the third series-starters in child plane columns.

Note that the third op2; in child column n comes from parent-pair
op2; n+2.

Op2 Spacing

An lllustration

Given the first three series-starting factor pairs in a
column, the op2 spacing for the column can be derived. We shall
illustrate this for the first child column in our example:

Child Column 1 Op2 Spacing
41367
-204-1
41+163
2452
41653
Table 68. Deriving a column's op2 spacing from three entries.

The Rest of a Column

Given the op2 spacing for a column, the rest of the column's
pairs can be calculated:
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Child Column 1 Op2 Spacing

41 367
-204-1
41- 163
245-2
41+ 653
—-204-3
41 41
24544
41-1021
-204-5
41- 1
245+6
41-1471
~204-7
41+ 43

etc.

Table 69. The rest of a column given the op2 spacings.

Generating Any Child Column

The same method can be used to derive the contents of the
other child columns generated by first-plane column 5 (the 367-
column) .

Generating Any Child Plane

Furthermore, the same overall method used to generate the
child plane from first-plane column 5 can be used to generate a
child plane from any first-plane column. A filled-in portion of
the plane generated from first-plane column 5 is shown below:

-204e -326e -326¢ -204 286
245e 489 979 1223« 1713
Parent 1 2 3 4 5

367 41 41e 367 163+ 367 653 367 1019« 367 1999« 367
367+ 163 47 163 163+ 41 653 41 1019« 163 1999« 653
367+ 653 41e 653 1631019 653« 1999 1019+ 2609 1999+ 4079
3671019 41« 41 163« 41 653« 1021 1019« 1997 1999+ 4937
36721999 411021 1631997 653« 4937 1019+ 6889 199911789
3672609 41 1 163« 367 653 3307 1019« 5869 199913219
36794079 411471 1633301 653« 9181 101913207 199923497
36794933 41e 43 1631019 653+ 6899 101911779 199925499
3676893 412003 16324931 653214731 101921563 1999939203

Table 70. The plane generated from first-plane column 5.

Please note that the numbers at the top of each child column are
the odd and even op2; spacings for the column, respectively.
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Extending Our Notation to Include "Plane"

U.'VWS

It is time to extend our notation to include plane in the
identification of factor pair series. As we introduced the
designation Y S earlier to denote series w within family v, now we
could introduce "V S to denote series w in family v within plane u.

1.uv
WS

However, we must go one step further. Since all planes
ultimately stem from the first plane, we denote series w in family
v in plane u stemming from the first plane as WV .  Thus, for
example, a family Sgolumn) in the plane generated from first-plane
column 5 would be *°VS. A factor pair series w within that family
would be MV gs. Please note that although the "S" in these
designations stands for "series," when we are referring to a
structure larger than a single series, for example a family of
series or a family of families (a plane), the "S" can still be
interpreted as "series." 1In the case of these larger structures,
the term "series" simply has the plural meaning. So, for example,
while we can read ™Y S as the particular series w in family v in

plane u, we can read 'YS as the series (plural) in family v in
plane u.

T:uv
WE&

An lllustration

A particular factor pair x within that factor pair series
would be Y s . To illustrate, let us see how we would designate
progressively more specific points in the plane generated from
first-plane family/column 5, the 367-column (see Table 63).

1:5

The 367-column is S, the fifth column of series-starting

factor pairs in plane 1. Column 4 in the child plane generated
from the 367-column is '®“S, the column with 1019 as its opl (see
column 4 in Table 70). The third factor pair series in that

column, the one starting with 1019.2609, is designated as !®%s.

Finally, the second factor pair in that factor pair series,
1039:2657, is "¥4s,.
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Relative x vs. Absolute x

Please note that x here is the sequence number of a factor
pair within its series, "relative" x, not the "absolute" x that we
have used when discussing f(x). While the relative x in this
example is 2, the absolute x for factor pair 1039-2657 is 1661, as
1039.2657 = 2,760,623 = f(1661).

Denoting the Plane as a Whole

Also, please note that to denote this whole child plane we
would use '°VS, not '®S, because the superscript to the immediate
upper left of "S" always denotes a family/column. Any plane

designation is appended to the 1left of the family/column
designation. If we are referrlng to the columns in the first plane
we write 'VS. Column 5 in particular is ®*S. When referring to the
columns in a child plane of the first plane, we write '™'s.

Grandchild Plane Designation

If we find that child plane columns can generate their own
child planes, then we would designate such "grandchild" planes as

1#u¥g and their series as "W sS. And so on, down as many levels as
desired.

Appending Any Number of 1’s on the Left Side of the
Superscript

One final note: Column 1 of the first plane can generate the
whole first plane, including itself as the first child column.
Working in reverse, if the first plane is vS then that special
first column is !S, just as we have labeled it all along. What is
not obvious, though is that the effect of appending any number of
1's to the plane-identifying superscript 1s the same no matter how
many 1's are included. In other words, 'S = Livg = LBlivg etce,

This holds because no matter how many leading 1l's appear in
the superscript, they always generate s, "the first family," down
to the rlghtmost of the consecutlve 1ead1ng 1's In other words,
since 'S = the first family and 'S = the First family and 'llg =
the flrst family and so on, any column or plane generated from one
of those is the same when generated from any other of those. For
example, the fifth column in the plane generated from s ( S) is
the same as the fifth column generated from *!s (*}*s) and they are
both the same as the flfth column generated from Lllg (11 S), and
so on. So, g = g g BSg otc,
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Some Questions

Are These Pairs All Really Series Starters?

Are the factor pairs generated by the plane construction
method recently discussed all series starters? No proof has been
attempted to date, but all cases tested have proven successful.

Can Child Planes Have Children of Their Own?

Are the child plane columns capable of generating children of
their own, grandchild planes? That question was pursued soon after
the discovery of plane generation. We shall see shortly, after a

brief digression into the realm of 2z, how that question is
answered.

Are Any Pairs Not Generated by the First Plane or lts
Children?

A related, yet different question also arises: Are there any
factor pairs not generated by the first plane or its children?

Again, no proof of the exhaustiveness of the plane family has been
pursued, yet no anomalous factor pairs are known.
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Getting to Know
the First Plane and Its Children

Calculating Attribute Values, and Ultimately Factor Pairs,
Given Coordinates

With the discovery of child planes, a whole new world opened
up for exploration. Before going on to the question of child
planes themselves generating (begetting?) child planes of their
own, we wanted to better familiarize ourselves with two levels of
plane -- the first plane and its immediate offspring. After all,
we had only recently expanded our horizons to encompass a whole
plane, the first superfamily, or first plane. We might want to see
if we could derive some formulas or rules so that we can calculate
any op2 or x spacing or what-have-you, given a factor pair series's
"coordinates" in the first plane or in a first-generation child
plane. Ultimately it would be nice to be able to calculate a

specific factor pair given only its designation, i.e. L”wsx.

A Short but Important Side-tour into One Corner of the Realm
of z

Before we embark on even that journey, we will travel briefly
into one corner of the realm of z. This side-jaunt is actually not
that irrelevant to looking for general formulas for parameters like
op2 and X spacing. 2z is another parameter and as it will turn out
much later, a very important one. For now, we will investigate a
small portion of the total territory of z-value occurrence.

The z-lists for the First Several Families

Looking back at the first plane, the lists of z's for the
first several families vreveal interrelationship after first
appearing autonomous. After the initial introduction via insertion
of the even-numbered families, the z-lists for the first several
families were as follows:
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W Is ?s ®s s ’s bs ’s
1 1 1 1 1 1 1 1
2 0] 1 1 0 2 1 3
3 2 1 3 2 4 3 5
4 1 1 3 1 5 3 7
5 3 1 5 3 7 5 ]
6 2 1 5 2 8 5 11
Table 71. The z-lists for the first several families.

Derived in the Usual Way

These values for z for each factor pair series were derived
in the usual way, by taking the square root of the op2;:41's
coefficient (or of the sum of the op2 spacing coefficients), or by
dividing the constant common divisor for a chart into the x,:41
coefficient (or into the sum of the x spacing coefficients) for a
series.

Cross-list Analysis

The values of z for a given family/column/v are orderly and
each sequence can be extrapolated. It is when we look for
relationships across the sequences that we find something to be
resolved.

A Sequence to the Sequences?

Yes, after a sequence of z's first appears, in an odd column,
it recurs three columns later. For example, column 1l's z sequence
reappears as column 4's sequence as well. But, is there an
underlying sequence to the sequences?

Glimpse of Underlying Patterning After Including Spacings

By enhancing Table 71 to include differences between z's, the
underlying patterning can begin to be glimpsed:
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W 's ’s °s *s ’s %s s 8s %s
1 1 1 1 1 1 1 1 1 1
-1 0 0 -1 1 0 2 1 3

2 0 1 1 0 2 1 3 2 4
2 0 2 2 2 2 2 2 2

3 2 1 3 2 4 3 5 4 6
-1 0 0 -1 1 0 2 1 3

4 1 1 3 1 5 3 7 5 9
2 0 2 2 2 2 2 2 2

5 3 1 5 3 7 5 9 7 11
-1 0 0 -1 1 0 2 1 3

6 2 1 5 2 8 5 11 8 14

Table 72. Spacing between z's.
So far, so good. Each z sequence has an odd spacing amount

and an even spacing amount. For example, for !s, the first, third,
and fifth z spacings are -1, while the second and fourth z spacings

are 2. Now, what cross-column pattern of spacings can we find, if
any?

Cross-column Spacing Analysis

All But One Even Spacing = 2

Well, at first glance the odd spacings don't seem to follow
any pattern. What about the even spacings? Bam! All of the even
spacings equal 2 excepts for column 2's.

Is the Exception Valid?

Is this a valid exception and the seeming synchrony of the
other columns merely coincidence? This is hardly likely in the
orderly number world that we have been venturing in.

Tinkering With Column 2

Even z-Spacing Set to 2

What would happen if we interceded in the second column's
sequencing and changed its even spacing to 2? This would yield the
following sequence of z's given the same starting value of "1" and
the same odd spacing of "0O":
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et
mN
w
N
)

1
0
2 1
2
3 3
0
4 3
2
5 5
0
6 5

Table 73. Column 2's z's with their even spacing changed to 2.

Valid But Irrelevant Result

This is a valid-looking sequence, matching 3S's and °s's, but
there is one mggor problem with it -- these values don't fit the
chart data for “S at all!

A Relevant Spacing Sequence with Even Spacing = 2?

Is there any way of changing the even spacing to 2 while
preserving meaningfulness of the changed sequence? As it turns
out, there is. What shall guide us to that solution, or
resolution, is looking at the odd spacings more closely.

Looking Closely at the Odd Spacings

As they stand, the odd spacings are:

WHNOMPFEFOOHK

Table 74. The odd spacings for z's looking across columns.
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Their Spacings

By including their differences we get:

0dd Spacing Difference

-1
1

0
0

0
-1

-1
2

1
-1

0
2

2
-1

1
2

3

Table 75. Spacings between the odd spacings for z's.

Looking at these difference values, it becomes evident that
after the first two they pair as -1, 2 repeatedly. This suggests
that perhaps the first two should really be -1, 2 as well.

Setting the First Two to -1, 2

What is the effect of changing the first two to -1, 2?
Working backward from where the -1, 2 differences originally begin
yields:
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0dd Spacing Difference

-1
-1

-2
2

0
-1

-1
2

1
-1

0
2

2
-1

1
2

3

Table 76. Spacings between odd z spacings with two revisions.

The Only Effect

Interesting. The only effect of this change towards
consistency is that the second odd spacing changes to -2.
Remembering where these odd spacings come from, the effect of the
above change is that 2S's odd spacing becomes -2.

L 4

Revised z Sequence

Coupling this change with the prior one where we changed ?s's
even spacing to 2 yields ’3's z's as follows:
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odd even

z spacing spacing
1
-2
-1
2
1
-2
-1
2
1
-2
-1
2
1
etc.

Table 77. 2S's z's revised.

If Only This Were Meaningful

If this z sequence for ’S were only meaningful with respect
to 2S's chart and things like x spacing and op2,:41 coefflClents,
then we would have a 2z sequence whose even and odd spacings fit
smoothly with those of all of the other families.

How This z Sequence Could Be Valid

But how could this alternating sequence of 1's and -1's for
z be meaningful? Well for those parameters relevant to z where
they relate to z?, -17 is the same as 1° And, the other two
parameters in the chart for ’S that relate to ve+z happen to be 0.
So, this rev1sed Zz sequence is consistent with the empirical data
for family 25. It works. Perhaps it would be best at this point
if we were to look at the rather unique chart for 3. Please see
Chart 12 in Appendix A.

Cross-column Consistency and Deeper Insight

So, we have gained not only corrected and more closely
consistent 2z sequences, but deeper insight into the workings of
this world as well.
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Charting the Child Planes

Charts for the First Nine Child Planes

In the spirit of the original documentation of the various
parameters such as op2 spacing for the first families, in Charts
1 through 4, a systematic sample charting of such information was
prepared for the families of the first nine child planes. This was
not to skip the parent, first plane -- it is its own first child
plane, so that it is covered indirectly in the survey of the
children of the first plane. Charts 13-66 in Appendix A contain
the data for those nine child planes, six families of series each,
the first three series per family being given. Only the first
three series per family are given because the rest of a family's
data can be derived from Jjust its first three series' parameter
values.

Invaluable Data for Generalization and Verification

Having the data in all of these charts on hand is invaluable
for later studies that require such raw data. Any attempt to
derive formulas or generalizations about the parameters of series
for a whole plane, or even a whole set of planes, needs such data
as the charts provide, both as input to the formulation process and
as test data for verifying the formulations arrived at.

Only Parameter Formula Results But + Discussed in Depth

We are going to bypass the details of the derivation of the
formulas for the various parameters for the first plane's child
planes and simply present the results. We will nevertheless need

to discuss the previously undeveloped parameter of "+" in some
depth.

Just Listing the Formulas Requires Explanation

Even just listing the resulting formulas will take a certain
amount of explanation, as they will partly be expressed in terms
of intermediate constructs not previously introduced. In fact, it
is best to begin by introducing those constructs.
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Intermediate Constructs

A Happy Medium

Intermediate constructs are used here so that on the one hand
the final forms of the formulas are not too cumbersome due to
having too many terms to deal with, and so that on the other hand
the final forms of the formulas are not too compact and abstract,
and distant from what is easily grasped and remembered. Examples
of intermediate constructs are the simple concepts A, B, C, and D
discussed earlier.

Review of A, B, C, and D

To review A, B, C, and D, since they are the base items that
the intermediate constructs and ultimately the formulas are built
from:

A, =[x+ 2]

B, = [x+ 2] -1
¢, =4/

D, = B (B, + 1)

where | | means "rounded down" and [ | means "rounded up".

A and B are useful for describing series with odd and even
spacings of the form

odd spacing -+ 1
even spacing s+ 1
odd spacing - 1
even spacing - 1
etc.

C and D are useful for series with spacings of the form

odd spacing ¢ 1
even spacing s« 2
odd spacing -« 3
even spacing - 4
etc.
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Subscript notation such as "A" is wused rather than
parenthetic notation such as "A(x)," even though these constructs
are really functions, since the subscript notation is more compact
and thus helps keep the expressions easier to read and grasp.
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The Full List of Constructs

The full list of intermediate constructs is:

A, = |x =+ 2]

B, = [x+2] -1

c, = Aa]

D, = B.(B, + 1)

E, = A(A, - 2)

F, = B(B, - 1)

G, = 2(B, - A) + 1

H = 2(D, -C) + 1

I, = 2(F, - E) + 1

J, = 81(G,  + A) + A,

K, = 40(H + C) + D_+ 1
L, = 40(I, + E - 2) + F,
M, = AA, + G,

N, = %(3G, - A)

Table 78. Intermediate constructs used in general calculations.

First-plane Child-plane Factor Pair Series General Formulas

The general formulas for the various factor pair series
parameters in the first plane's child planes are:

LYop1, = 'Mop2, = JpD, + L, + 41

wve opl = 2G.D, + (I, - 1)C,

lzu:vcevopl = 2AD, + (E, - 1)C, + 1

wv¥ op2, = [2LA, + J,(2B,+1)]1D, + [L,E, + J,(F,~1) + 41]C, + K,
1y

2

(Gu + AU)MVW + GVAW

w
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Parameters Addressed

The parameters addressed are:

1 uve p 1 ]

the opl value starting off all factor pair series in family
v in plane u

tuwcodcug1

the coefficient for the odd spacing in the opl sequence in all
factor pair series in family v in plane u

1.'U.'Vcevop 1

the even spacing coefficient for the opl sequence in family
v in plane u

rw%#"021

the op2 value starting off a particular factor pair series in
family v in plane u

1:uv
Wz

the value of z for factor pair series w in family v in plane

Parameters Not Addressed

Work on generalizing other parameters was done but will not
be presented here.

Parallels Between Parameters

Before making these abstract formulas more understandable by
working through some examples, we will point out some interesting
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parallels between some of the parameters.

A Family Example

We will reproduce and extend to five columns wide a portion
of the chart for family !®**®s (chart 30) to help illustrate further
the intricate interrelationships permeating this number pattern
realm -- please see Chart 67 in Appendix A.

Internal Spacings Included

Now we will show the same data but with internal spacings
indicated for x spacing and op2 spacing coefficients, and for ¥x,:41
and op2,:41 subtrahends -- please see Chart 68.

Parallel Spacing-spacings

x Spacing Coefficients vs. op2 Spacing Coefficients

Notice how the spacings between spacings parallel each other
between the x spacing coefficients and the op2 spacing
coefficients. While the odd x spacing coefficients ascend by 8 and
then by 22, repeatedly, the odd op2 spacing coefficients for those
same factor pair series ascend by 8-1, then 22-2, then 8+3, 22-4,
and so on. The same parallelism exists for the even spacing
coefficients' own spacings: -3, -2, -3, -2, etc. vs -3.1, -2-2,
-3+3, -2+4, etc.

x,:41 Subtrahends vs. op2,:41 Subtrahends

Moving down to the subtrahends for x,:41 vs. for op2,:41, the

same kind of parallelism occurs: -1, -5, -1, -5, etc. vs. -1-1,

-5¢2, -1+3, -5+4, etc. Please note that we are here considering
subtrahends as increasing, the 1larger the amount that gets
subtracted -- thus, the spacings between subtrahends are treated

as positive numbers in Chart 68 though more and more is being
subtracted as one moves across the chart to the right.
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x Spacing Coefficient Sums vs. x.:41 Coefficients, and op2
Spacing Coefficient Sums vs. op2,:41 Coefficients

And, of course, we already know about the parallelism between
the x spacing coefficient sums and the Xx;:41 coefficients, and
between the op2 spacing coefficient sums and the o0p2;:41
coefficients.

Getting Back to General Formulas

Getting back to general formulas, the ultimate objective of
such formulation would be the ability to predict what a given
factor pair within a given factor pair series is.

op2 Spacing is Conspicuously Absent

No such formula has yet been presented. Further, an essential
ingredient in such a calculation would be op2 spacing, which itself
is conspicuously absent from the list of parameters with formulas
so far discussed.

+ Will Lead the Way

After our examples with the existing formulas we shall
introduce the concept of #, which ties directly into op2 spacing.
From there the way is clear to a method for deriving a given factor
pair.

Formula Usage Examples

Let us work through two examples of usage of the general
formulas that we have so far. The parameters that we will derive
will be the starting opl for a factor pair series (and for the
whole family), the opl spacing coefficients, the first op2 for the
series, and z for the series. The two example series will be
1:2:3 S 1:9:6

4S and 3S .
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Five '?3,S Parameters

1.2.348:
u =2
v =3
w = 4
A, = |u2] = |2:2] = |1] =1
A, = |v+#2] = [3+2] = |1.5] =1
A, = |w+2] = [4+2] = [2] =2
B, = Jut2] - 1 =J2+2] -1 =711 -1=1-1=0
B, = [v#2] - 1= [3%+2] - 1= J1.5] -1 =2-1=1
B, = [wi2] - 1= 4%2] -1 =1J2] -1 =2-1=1
c, =a’=1=1
c, =a’ =1 =1
c, =A2=2"=4
D, = B,(B,*1) = 0(0+1) = 0(1) =0
D, = B,(B,+1) = 1(1+1) = 1(2) = 2
D, = B,(B,+1) = 1(1+1) = 1(2) = 2
E, = A, (A,~2) = 1(1-2) = 1(-1) = -1
E, = A,(A,-2) = 1(1-2) = 1(-1) = -1
F, = B, (B,-1) = 0(0-1) = 0(-1) =0
F, = B,(B,-1) = 1(1-1) = 1(0) = 0
G, = 2(B,~A,) + 1 = 2(0-1) + 1 = 2(-1) + 1 = -2+ 1 = -1
G, = 2(B,-A,) + 1 =2(1-1) + 1 =2(0) +1 =0+ 1=1
G, = 2(B,-A,) + 1 =2(1-2) + 1 =2(-1) +1=-2+ 1= -1
H, = 2(D,~C,) + 1 =2(0-1) + 1 =2(-1) +1=-2+ 1= -1
I, = 2(F,~E,) + 1 =2(0 - -1) + 1 =2(1) +1 =2+ 1= 3
J, = 81(G+A,) + A, = 81(-1+1) + 1 = 81(0) + 1 =1
K, = 40(H+C,) + D, + 1 = 40(-1+1) + 0 + 1 = 40(0)+1 = 0 + 1
L, = 40(I+E-2) + F, = 40(3 + -1 - 2) + 0 = 40(0) + 0 = 0
M, =AA, + G, = 12 + -1 =2-1 =1
123 6p1, = "%0p1, = J D, + L,C, + 41
= 1.2 + 0.1 + 41
=2+ 0 + 41
= 43
123 ¢ 40pl = ¥ opl = 2G,D, + (I,-1)C,
= 2+-1+2 + (3-1)°1
= -4 + 2.1
= -2
123 o, 0opl = "3c_opl = 2AD, + (E,-1)C, + 1

2012 + (-1 - 1)+1 + 1
4 + -2 + 1
3
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1:2:3

0P2, = [2LA, + J (2B+1)]D, + [LE, + J,(F,~1) + 41]C, + K,
= [2+0+1 + 1(2+1 + 1)]2 + [0+-1 + 1(0-1) + 4114 + 1
= [0 + 1(3)]2 + [0 + 1(-1) + 4174 + 1
= [3]2 + [0 -1+ 41]4 + 1
= 6 + 404 + 1
= 6 + 160 + 1
= 167

l'2‘342 Au)Nva + GvAw
1 + 1-2

T I |

Checking the Calculations Against the Chart

Now, let us check these results against the chart for family
123 5, Chart 21. "Well," you say, "the chart only contains the data
for the first three series in the family while our example involves
the fourth series." No problem. We need just extend the data from
the first three columns across to a fourth column, as is shown in
Chart 69.

The calculations match the chart.

Five ¥°,S Parameters

Our second example's results can be checked against an
existing chart.

1'9'635:

u=29

vV =6

w =3

A, = |u+2]| |9+2| = |4.5] = 4

A, = [ve2] = [6+2] = [3] =3

A, = |ws2] = |3+2] = [1.5] =1

B, = [u+2] - 1 = [9+2] - 1 = [4.5] -1 =5 -1= 4
B, = [v¥2] - 1= [6%2] - 1= [3] - 1=3-1=2
B, = [w:2] - 1 = [3+2] - 1= J1.5] -1 =2-1=1
c, = A2 =4>=16

c, =a°’=13"=09

c, =A°=1=1

D, = B,(B,+1) = 4(4+1) = 4(5) = 20

D, = B,(B,+1) = 2(2+1) = 2(3) = 6

D, = B,(B,+1) = 1(1+1) = 1(2) = 2

E, = A, (A,-2) = 4(4-2) = 4(2) = 8

E, = A,(A,-2) = 3(3-2) = 3(1) =3



B, (B,-1)
B, (B,-1)
2(B,A,)
2 (B,-A,)
2 (B,-A,)
2 (D,-C,)
2 (F,-E,)
81(G,+A,) + A,
40 (H,+C,) +D,+1

2(20-16) + 1

= 2(12-8) + 1 = 2
81(1+4) + 4 =
} 40(9+16)+20+1 (25)+21 = 1000+21
40 (I +E,-2)+F, = 40(9+8-2) + 12 = 40(15)+12 = 600+12
= AA, + G, = 3+1 + 1 =3+1 =4
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$,0p1, = "op1, + L,C, + 41
*6 129 + 41
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1 1:9:6

’9:63codop1 = C,q0P1 2G,D, + (I,~1)C,
2016 + (9-1)9
12 + 8(9)

12 + 72

84

[ [

1:9: 1:

:9:6
Cc.,opl

®,c.,opl 2A D, + (E,~1)C, + 1
2¢4+6 + (8-1)9 + 1
48 + 7(9) + 1

48 + 63 + 1

= 112

1:.9:6
30pP2,

[22612+3+409(2+2+1) ]2+[612+3+409(2-1)+41]1+1021
[3672+409+5]2+[1836+409+41]1+1021

(3672+2045)2 + 2286+1 + 1021

(5717)2 + 2286 + 1021

11434 + 3307

14741

TR T T T | O

1:9:6
(G, + AM,, + GA,

(1+4)4 + -1-1
5¢4 - 1

20 - 1

19

Checking the Results

) + 4 = 405 + 4 = 409

1021
612

[2L,A, + J, (2B,+1)]D, + [L,E, + J,(F,~1) + 41]C, + K,

Again, let us check our results against the chart, this time
Chart 66. Lo and behold, the calculated results match the chart

figures.
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op2 Spacing

Again, all that is missing in order for us to calculate any
factor pair in this family of planes are formulas for the op2
spacing coefficients.

I+

An avenue into cracking the puzzle of op2 spacing that seemed
promising and that was pursued successfully was that of * analysis.
Yet another startling pattern was discovered, this time concerning
the op2 spacing coefficients.

Yet Another Startling Pattern -- The Common Divisor of op2
Spacing Coefficients

Take a look at any of the family charts. Notice that besides
adding up to a perfect square, the two op2 spacing coefficients for
a series always have a common denominator. It just so happens that
that common divisor in each case is z. So, there is an intimate
relationship between z, the two individual coefficients, which are
both multiples of z, and their sum, which is z?. Furthermore, the
two numbers remaining when the two coefficients are divided by z
are equidistant from %z.

An Example

As an example, let us take the op2 spacing coefficients for
the series that we just worked out other parameters for, "9%s. Its

z, as we calculated, 1is 19. Its odd and even op2 spacing
coefficients are 152 and 209, respectively. 152 + 209 = 361, which
is 19%2. That much we have known for quite a while. What we are

illustrating here, however, is that both 152 and 209 are divisible
by 19. 152 = 8+19 and 209 = 11-19. Also, 8 and 11 are equidistant
from %(19) or 9%. In other words, 8 and 11 are 9% *+ 1%
(technically, 9% + -1% respectively).

1z + the Amount Called "+"

That * amount applied to %z is what we shall call the %
parameter for a series. Its significance is that since we can
calculate z for a series, and therefore %z, if we only knew the %

for the series, then we could calculate both op2 spacing
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coefficients. The odd coefficient is z(%z + *) and the even
coefficient is z(%z - ).

Finding + vs. op2 Spacing

Is this any better than just figuring out directly what the
two coefficients are, the way the other formulas were found? It
may be slightly more indirect, but the numbers to work with in
finding the generalizable pattern, the * values, are much smaller
than the op2 spacing coefficients that they lead to. This is very
helpful when trying to derive formulas to cover masses of data.
The situation is remotely analogous to that of working with
logarithms rather than with the numbers that the logarithms
represent.

The Formula for +

So, the road to formulation traveled here was the one of *
analysis. The formula is:

1:u: —
et = Nquw - 12G'vAw'

w

lllustrating Its Use

Let us illustrate its use:

1:9:6 _ -1
3i - NuMWIw /ZGvAw

We already have values for all of these terms except for N,, so
all that we need to do is to calculate N;:

N, = %(3G, - A,)
= L(3+1 - 4)
= %(3 - 4)
= % (-1)
= =1
2
Therefore L&%i -

o4 - 1/20—1.1

[ |
|
N oo
|
S

[S\ad
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Finding Any Factor Pair in Any First-plane Child Plane

Given the formula for *, op2 spacing odd and even coefficients
can be calculated, and therefore any factor pair in any series in
any family in any plane that is a child of the first plane.

What About Grandchild Planes and Beyond?

But, what about grandchild planes? Do they exist? Are there
in fact an infinite number of levels, or generations, of planes?

First, an Example of Finding a Factor Pair

We shall be getting to those questions shortly. First, let
us work through an example of calculatlng a specific factor pair
now that we have a handle on op2 spacing, at least for first-plane
child planes.

1:9:6
3SH2
Contlnulng to work w1th 19%8, let us find the twelfth factor
air in the series, i.e. %s,. We need to find "V, opl, and
¥ op2, for x = 12. They are derived, respectively, by adding

luv l:uv

appropriate amounts to ~OpPl1l; and op2. These amounts involve
the odd and even spacing coefficients for the two sequences (the
opl and op2 sequences).

The Two Operands (Factors)

The expressions for the two factors in the factor pair are:

IRIRY 1:acv luv

LOoPl, = LHNOPll + C,q0P1°C, + c,,0pl+D,
1:u:vwop2x — uvwopz1 + 1:u:vaOdOp2.Cx + 1:uvW evopz D
op1

Taking advantage of the calculations that we have already
performed for 1:9:6 3S, we can proceed quickly to:

1:9:6 _ 1:9% 1:9:6 1:9:6 1:9:6
30pl;, = opl,, opl, + C,qOpl+C,, +

cevopl . D12
8003 + 84-Cj, + 112°-D,,
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= lejzjz
= |6
Z
= 36
Dy, = By (Bypt1)
= ([12+27]-1) [12+2]
= ([6]-1) [6]
= (6-1)6
= 56
= 30

= 8003 + 84+36 + 112-30
= 8003 + 3024 + 3360
= 14387

So , 1:9:6Op112

op2

1:9:6 1:9:6 1:9:

1:9:6380p212 ,0p2; + 3Coq0P2°Cy, +
14741 + 15236 + 20930
14741 + 5472 + 6270

26483

6
3CeyOP2°Dyy

The Pair, Verified

So, our factor pair is 14,387 + 26,483. Double-checking that
this does indeed yield an output of x} + x + 41, 14,387 + 26,483
= 381,010,921. This checks out, via the %(4mn—163ﬁ—1 formula, to
be f(19,519).

Are All Operands Prime?

One question that might well be asked at this point, if it has
not already come to mind at any of many prior points, is "Are the
two factors in a factor pair both prime numbers?" In general, no.
Neither number need be prime. In this example, the first factor
is prime while the second is not.

Calculator Limits Reached

Another point brought to mind is the fact that as the numbers
being worked with in this investigation increased in size into the
hundreds of millions, the limits of my 8-digit-readout pocket
calculator were reached. Recall that only in the very early stages
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of this study was a computer employed. Although I had my own
personal computer that I could have used, these studies involve
more analysis and synthesis than number crunching. Also, computers
are notorious for approximating large numerical values rather than
getting them exact. So, a pocket calculator was actually handier
for my math needs than a computer, anyway.

A New Calculator

When I reached my calculator's limits I headed out to get a
new one with a more capacious display. The one I settled on, a
Casio FX-4000P, not only had an 11-digit display, but it was loaded
with advanced functions as well, whereas my old calculator had only
the simplest functions such as addition, subtraction,
multiplication, and division. The Casio is programmable, as well,
although I had no thought of using its advanced functions or its
programmability.

Advanced Features

Well, I fell in love with my new toy. Not only was it great
at handling much larger whole numbers and preserving their
wholeness, but I decided to dabble with the program capability as
well.

Programming

The First Program

, I started with a simple program to calculate which input x to
X’ + x + 41 produced the output equal to the product of the two
factors in a given factor pair. In other words, I implemented the
%(4ab-163)°’-1 formula in a small program. See Appendix B for the
program listing (program 1).

Programming Language

The Casio has its own programming language. In it, symbols
count as "steps." As many as 10 programs can reside in memory at
one time, but the total number of steps for all programs combined
cannot exceed 550. Program 1 consumes 37 steps (the character
string "Mcl" is a single symbol, standing for "memory clear," and
thus counts as only one "step.").
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The Second Program

The second program was more ambitious. Given an initial
absolute ¥ and the next opl in a factor pair serles, it finds that
next opl's absolute x and its op2. To illustrate, given x = 19,519
(recalling that '®%s, = £(19,519)) and the next opl ( 6oplm) =
15,731, the program determines that ( opzm) = 28,991 and that the
absolute X yielding 15,731 - 28,991 as an output is 21,355. This
procedure is useful for stepplng through a series w1thout knowing
the op2 spacing. Program 2 uses up 66 steps. See Appendix B for
the program listing.

The Third Program

Once the formulas needed for calculating any factor pair in
any first-plane child plane were known, the most ambitious Casio
program of all was undertaken. The third program finds and
displays, for any input u, v, and w, the opl,, cyopl, c,opl, 2z,
op2,, ¥, ¢c,,0p2, and c, op2. At that point, the user is prompted for
a relative x (that 1s, an x within the series, given that x = 1 for
the first factor pair in the series). The program then promptly
produces opl, and op2,. The user can then enter another x and
repeat the process any number of times for that series. The third
program requires 509 steps of memory, and this with every coding
shortcut imaginable. Even so, there is not enough room for all
three programs to co-reside, so the second program was erased. The
listing for the third program appears in Appendix B.

The Fourth Program

The fourth program is a slimmed-down variation on the second
program. This program finds and displays the next op2 given the
next opl and the current op2. Of what value is such a program?
Doesn't the program description imply that one already knows the
next opl, and if so, where did that knowledge come from and why
couldn't one just as easily know the next op2 without this program?

The program's great value arises because it is often much
easier to know the opl's for a factor pair series than to know the
op2's. This is due to the fact that all of the opl sequences for
a whole family of series are the same. To bring this fact home,
look at any of the columns in either Table 63 or Table 70.

These series family columns each have the same opl, for each
series starting pair within the family. They each have the same
opl sequence in general. If one knows the opl sequence for any of
the series in a family, then one knows the sequence for any of the
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other series in the family. Not only that -- since the opl
sequence is the same as a corresponding op2 sequence in the
family's parent family (the parent plane family that generates the
plane containing the family in question), the sequence may already
be familiar from before, when the parent family may have been
worked with.

Oon the other hand, each series's op2 sequence is different
within a family, and there is a good chance that the op2 sequence
has never been worked out before. So, if one has a handle on the
opl sequence for a series, then with the aid of the fourth program
the op2's can be quickly calculated dynamically.

Roller Coaster Series

One oddity about factor pair series that has been taken into
account in the fourth program is that for some series the factors
in factor pairs do not strictly increase in magnitude with each
successive pair. In some series the values go up and down
alternately. This roller coaster effect occurs when either the odd
X spacing or the even x spacing is negative. For example, take the
series 3,5, 1Its factor pairs are:

Relative Factors
Pairs
43 « 167
41 + 163
47 « 179
41 -« 167
53 - 199
43 « 179
61 « 227
47 - 199

O NONU D W R X

etc.

Table 79. Roller coaster factor pairs of series kmis.

One of the inputs to the fourth program is a "direction"
parameter. This tells the program to look for the next op2 either
as a larger number than the current op2, or as a smaller number.
The direction parameter takes either a "1" or a "-1" as its value,
for go "up" or "down" respectively, when looking for the next op2.
The value is used directly as an increment or decrement. If the
next opl value is less than the previous one, the direction should
be -1. If the next opl value is greater than the previous one, the
direction should be 1.
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Cutting Corners

In order to save steps in the fourth program so that it would
not crowd the third program, certain corners were cut. Not only
are the prompts for the input values omitted, but the first program
was erased as well. The fourth program takes three inputs
initially, which are manually placed in memory registers prior to
execution of the program. The inputs are: the next opl, the
current op2, and the direction.

After the initial run of the program, only the next opl
parameter must be entered manually to continue moving "up" through
successive factor pair results, as long as the memory registers
with the other two parameters are intact from the initial run,
which they are if one runs no other program which uses those
registers. Even powering off the calculator does not cause the
registers to lose their data.

If the series is a roller coaster series, however, then one
must enter the direction parameter as well for each calculation,
as the direction keeps alternating for such a series.

Occasionally, the op2 returned as the answer 1is not the next
one, but the current one. This occurs when by coincidence the
product of the next opl and the current op2 also yields an output
of x> + x + 41 (the current opl and current op2 yield such an
output by definition). When the answer returned is the current

op2, the correct next op2 will be returned after pressing the EXE
key again.
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Investigation into Grandchild Planes

The %%, S First Operands

Before the third program was written, investigat}g? had
already begun into the possibility of grandchild planes. S was
chosen to be expanded into a prospective grandchild plane:

-1346¢

-1632«

-1632«

-1346¢

2080e

2938e

125335 1713« 2285e 5711e 62830 9709¢ 10281e
1999¢ 367 | 36721999|65301999|4079¢ 1999|4937« 1999|11789¢ 1999|13219« 1999
1999e 653 | 367« 653|653¢ 367|4079e 367[4937¢ 653|11789 407913219« 4937
1999e 4079 | 3674079[65394937 (4079011789 (4937913219| 1178923497 13219225499
1999e 4937 || 367« 471|653 41[4079¢ 6893|4937« 9181|1178929737|1321934313
199911789 | 367+6893|6539181|4079029737 493734313 | 11789068573 | 13219075437
199913219 | 367« 163|6531021 4079021577 493727583 1178978973 1321990127
199923497
1999025499

Table 80. 1:5:55 expanded into a prospective grandchild plane.

Wlth the help of the second program,
series 6S was made.
1321990127, the sixth
column of Table 80.
pair: 13219-90127

a test of prospective
This is the series that would start with
(prospective) starter pair in the sixth
These two factors do yield a viable factor
=1,191,388,813 = f(34,516).

Do They Really Start a Series?

The question is,

does this factor pair really begin a series
of factor pairs?

op1 Spacing from Parent op2 Spacing

Because of another regularity noticed in first-plane child
planes, that L Yopl, = op21, we could work with an opl spac1ng in
the new plane level (grandchlld level) based on an op2 spacing from
the parent child-plane column. So, the opl spacing here for column
1:5:5:6g should equal the op2 spacing for parent column 1835 geries 6,
or the !® S op2 spacing. This equals 180+, 144-.
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The Second Program in Action

Given opl, and op2,, and the opl spacing, with %he help of the
second Casio program we could try to find out if * ¢S is really
a series, and if so, what its x spa01ng and op2 spac1ng are. The
results support 13, 219 +90,127 as a series starter:

absolute
X opl op2
34,516 13,219 . 90,127 T .
469-1 180-1 12221 via
34,985 13,399 . 91,349
3772 1442 9872 Casio
35,739 13,687 . 93,323 —
4693 180+3 12223
37,146 14,227 . 96,989 — via
3774 1444 9874 extrap-
38,654 14,803 . 100,937 — olation

Table 81. The series started by 13,219 - 90,127.

Assault on the Third Level

With these encouraging results in, the assault on the third
level of planes began 1in earnest. opl,'s and op2;'s and opl
spacings would be straightforward to calculate The only real
challenge would be to find the op2 spacing for a factor pair
series. This could be done via finding the * for the series, as
was done with the second-level planes.

Data for Deriving a + Formula

a lot of sample data, in other words many examples of op2 spacings
or +*'s for third-level series from which to generalize.

What was needed in order to come up with a formula for * was

Generating Data in Bulk

The problem became one of generating such test data in bulk.
Methods for mass producing * data were developed, to be described
shortly, which made the goal attainable. These methods involved
the discovery of shortcuts that drastically reduced the time and
effort to extract the + patterns for whole planes in assembly-line
fashion. To appreciate how important this was, recall that there
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is a whole plane full of series for each family column in each
parent plane. So, if we had looked at nine planes at level two,
each with six families, then each of those 54 families could spawn
a whole plane at level three. And, we might be interested in six
families of three series each for each of those 54 grandchild
planes. And, remember, all of this work was being done by hand.

The Streamlined Technique

To illustrate the streamlined technique that evolved for mass

+ determination, let us look at an example. The example case to
be worked with is for the plane generated from second-level column
1545 Tts child plane is denoted as '**'g,

Plane 1:5:4.'vs

The First Three Series-starting Pairs

First, we need to generate the plane in the familiar way, as
columns of series-starters. One shortcut here is that we only
generate the first three starting pairs in each column, as the rest
of them for a column can be extrapolated from the first three:

1:5:4:VS

1:5:45

1019+ 367 | 367+1019{163+1019|2609« 1019|1997+ 1019|6889+ 1019 |5869+ 1019
1019« 163 | 367 163|163 367|2609¢ 367|1997« 1163|6889« 2609 |5869« 1997
1019+ 2609 367‘2609'163'1997 2609+ 6889|1997° 5869|6889013207 ‘5869011779
1019+ 1997
1019« 6889
1019« 5869
101913207
101911779

Table 82. Child plane column starts generated from 1:5:45.

op2 Spacing Coefficients Divided by z, and +

We now need to create a similarly laid-out table but one with
* data for each factor pair series, in the position where in Table

82 the series' starting factor pair appears. The exact form of the
+ data in each such spot is:

CoqOP2 + 2

C.,,Op2 + 2z
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The intermediate data c,,op2+z and c,op2+z tie into c,op2 and
C,,0P2 but save us from writing those numbers down, too. §1yen
these two items, and writing z next to them, we can mentally divide
z by 2 and subtract that from cyop2+z to get the % value for the
series. We can also go in the other direction and reconstruct
c,40p2 and c,op2 if we wish, by having z right there.

Let us illustrate these points. For our example we can use
series 9. Recall that its op2 spacing values are 152 and 209
for odd spacing and even spacing respectively. Also, z for the
series is 19. We also worked out the + value for the series as
-1.5. The * entry for the series would appear as:

8
4 o+ 19 -1.5

portraying that the odd op2 spacing is 8 times z, or 8 + 19 = 152,
that the even op2 spacing is 11 times z, or 11 - 19 = 209, that z
is 19, and that the * value is -1.5. 2z + 2, or 19 + 2 = 9.5, is
a distance of 1.5 from both 8 and 11. The * value has a minus sign
because by convention, to get the * value, we subtract z + 2 from
the top number, the odd op2 spacing divided by z. In this case we
subtract 9.5 from 8 to get -1.5.

To reconstruct the odd and even op2 spacings given this kind
of * entry, we simply multiply z times the two values to its left.
In this example that would be 19 times 8 = 152 and 19 times 11 =
209.

Just Looking Up the op2 Spacings

In order to write down cop2+z, c,op2+z, and z for each
series, we need to find that information, of course. Fortunately
we can now take advantage of another shortcut. Rather than have
to generate the first few factor pairs for each series in order to
extract the op2 spacing from that data, we can simply look up the
op2 spacings back in the parent column's chart (for column 1:5:4g
that is Chart 40). This holds true for op2's in the three series
written down in each column in ***¥s, since each op2, given is
directly taken from the parent column in the child plane
construction process. op2,;'s beyond the first three in a generated
column, however, can be and generally are numbers not seen before.
So, this development is also fortuitous.

As a reminder, recall that in a newly generated column, the
first op2; is familiar, being the parent column's opl; the second
and third op2,'s are also familiar, coming directly from op2,'s in
the parent column. The spacings that each op2 series had in the
parent plane, when the op2,'s appeared in series, can be borrowed
as the spacings in the generated plane. The opl;, for a generated

100



column, of course, can take its spacing in the same way, from the
spacing of the parent op2, that it was taken from.

The :+ Data

So, we can now populate the table of * data, with much-reduced
effort:

N
2
|
°B 3.5

Table 83. + values for '32%%3Vs,

The :+ Pattern for a Plane Given Just the +’s for the Plane’s
Upper Left

We are not solely interested in the individual * values for
generated planes such as this one, however. Instead we need to
find the general pattern of * growth across each whole plane.
Given that and given the starting * values in the upper left corner
of a plane, we could calculate the + value at any coordinates
within the plane.

Admittedly this technique might seem only one possibility,
with little backing to sanction it over some other choice of #*
patterning to deal with. This is the actual pattern found,
however, in the earlier work on generalizing * patterns into a
formula for level-2 planes. That work was not discussed in its
details, so for the reader this is all new, of course. The
important point is that the * value at a given point in a plane can
indeed be calculated by knowing the horizontal and vertical spacing
patterns for #'s across a plane, and given the * values for the

points in the "starting" upper left corner of the plane (to add the
displacements to).

101



An Even Shorter Way

Upper Left Corner : Values

It turns out, however, that we do not even have to write down
this much + data for a plane in order to derive its horizontal and
vertical spacing parameters. Let us first take another look at the
+ data in Table 83, this time just showing the *'s themselves:

W v= 1 2 3 4 5 6

1 1.5 1.5 1.5 1.5 1.5 1.5
2 -1.0 -0.5 0.5 1.0 2.0 2.5
3 2.0 2.5 3.5 4.0 5.0 5.5

Table 84. =*'s for plane ¥**'g,

+ Spacings

Now let us insert the spacings between values in a column into
the data in Table 84:

\ v 1 2 3 4 5 6
1 1.5 1.5 1.5 1.5 1.5 1.5
=-2.5 =-2.0 =-1.0 -0.5 0.5 1.0
2 -1.0 -0.5 0.5 1.0 2.0 2.5
3.0 3.0 3.0 3.0 3.0 3.0
3 2.0 2.5 3.5 4.0 5.0 5.5

1:5:4:v

Table 85. 1's for plane S with spacings.

Orderly Alternation

Now, it just so happens that, through yet another gem of a
pattern, the *'s 1in a family always progress with the same
alternating spacings. For example, family 1 in Table 85 would
progress as:

102



W v=1

1 1.5
-2.5

2 -1.0
3.0

3 2.0
-2.5

4 -0.5
3.0

5 2.5

etc

Table 86. Family *'s progress with simple odd and even spacings.

Reverse-deriving op2 Spacing

The actual op2 spacings that Table 86 values represent can be
reverse-derived from this sequence and the regular spacing of the

z's:
C,qOpP2+2 C,.,O0p2+2 C,40pP2+2 C,q0p2
= = &
+ = Z+ + z+2 - & C.,0p2+2 C.,0op2
- 1.5 5 2.5 4.0 1.0 4 20,
_ _ _ _ -2 4
1.0 2 1.0 2.0 0.0 0 0
6 48
2.0 8 4.0 6.0 2.0 y 16
-0.5 1 0.5 0.0 1.0 0 °
8 88
2.5 11 5.5 8.0 3.0 5 33
Table 87. Reverse-deriving op2 spacing from + and z.

More + Spacing Examples

To further illustrate this regularity in spacings between *
values in a series, here are a couple of additional examples:
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op2 odd opz2
op2 spacing spacing + z

i Spacing z + 2z z+2 - z+2 (=%) Diff.
1 i 2 % 1.0 1.0
-1.5
2 ° 1 ° 0.5 -0.5
2.0
3 20, 5 4 2.5 1.5
-1.5
4 % 4 % 2.0 0.0
2.0
5 @ 8 ° 4.0 2.0
-1.5
6 % 7 ‘. 3.5 0.5
Table 88. Regularity in * spacing for *®s.
op2 odd op2
op2 spacing spacing + z
w Spacing Z + 2z z+2 - z+2 (=1) Diff.
1 0 5 %, 2.5 -0.5
0.0
2 % s 9 4 4.5 -0.5
-1.0
3 12 o 19 8 9.5 -1.5
0.0
4 230 o 23 . 11.5 -1.5
-1.0
5 402 33 R 16.5 -2.5
0.0
6 . 37 . 18.5 -2.5
Table 89. Regularity in t spacing for '*°s.

Remembering the Goal

series within a given family column within a given generated plane.
If we can predict the regular * spacings for a column, then all
that we need to know is the starting * value for that column.

The goal here is to be able to predict the * for a given

First-series + Values

It just so happens that the * values of the first series in
every column in a plane are the same. This is because the op2
spacing for those first series are all the same. This, in turn,
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is due to the fact that the first op2 in every column's first
series is the same number, the parent column's opl1 For example,
in plane 154"8, every column s first series's first op2 is 1019,

the parent column's ( 1:5:4 S's) opl,.

How the + Spacings Change Across a Plane

So, all that we need for predicting a particular + in a given
generated column are the * spacings for that column. Therefore,
what we need is a handle on how those spacings change from left to
right and from top to bottom across the plane as we move from the
upper left corner of the plane. This handle is readily available.

Even and Odd :+ Spacings

Referring back to Tables 84 and 85, notice that the even
spacing in every column is the same, 3.0, though the odd + spacings
change from column to column. And, Keeping in mind the regularity
illustrated by Table 85, every even * spacing for the plane is 3.0,
while every odd * pattern across columns is the same, -2.5, -2.0,
-1.0, etc., whether the spacings are between w's 1 and 2 for
columns or between w's 3 and 4, or 5 and 6, etc.

What We Need

So, given this kind of regularity, which is the same for all
planes, all that we need is to find the even * spacing (which

remains constant) and the odd * spacing pattern across columns.

The Odd Spacing’s Own Spacing

As might almost be expected, the odd * spacing's internal
P?}tern follows an odd and even rhythm. For example, for plane
¥S, the odd * spacings, when reading across columns, are:

-2.5
-2.0
-1.0
-0.5
0.5
1.0

Table 90. The odd * spacings across columns for plane ®%'g,
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To see their spacings

-2.5
0.5

-2.0
1.0

-1.0
0.5

-0.5
1.0

0.5
0.5

1.0

Table 91. ®*'S's odd * spacings' own internal spacings.

Notation for Nested Spacing

To keep our bearings, now that we are talking about spacings
within spacings, we can use the nested coefficient notation. The
odd * spacings in Table 91 are also known as ""*Vc_,+ (as opposed
to, for example, ®*1 c4*, which is -2.5, or L&&%:d+, which is -2.0).

The spacings for the sequence 1'5'4"’cdi are 154VQmmi and
le”qﬁwi, which are 0.5 and 1.0, respectively.

We Have What We Need -- Using It

Now we have all of the information that we need for predicting
any * in plane '®*Vg. Let us pick a target * to predict. Suppose
that we want to figure out the = for the fourth series in the tenth
column. We know the first + in the column, since it is the same
for all columns, 1.5. We need to calculate the odd * spacing for
the column, and we already know the even t* spacing, since it is

always the same for the plane, 3.0. So, what is the odd * spacing
for column 107?

1:5:4:10
4t

By using arithmetic familiar by now,
(1:5:4v

1:5:4:
- c + odod )Av + ( Y odevi)Bv
= -2.5 + O.S‘Av + . .Bv'
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Since v = 10 (the tenth column),

A, = Ay
= [10+2]
= |5]
=5
and
B, By
= [10+2] - 1
= [5] - 1
=5 - 1
= 4,
1:5:4:v
cOdi
Therefore,
1:5:4:VCOdi_ = =2.5 + 0.55 + 1.0+4
= -2.5 4+ 2.5 + 4.0
= 4.0.
1:5:4:10
Wi.

So, the formula for a given * within column 10 can now be
built:

1:5:4:10 + 1:5:4:10 1:5:4:10

S = e Cugt + A, + ¢ + . B
= 1.5 + 4.0A, + 3.0B,
= 1.5 + 4.0, + 3.0B, for w = 4
= 1.5 + 4.0[4+2] + 3.0([4+27]-1)
= 1.5 + 4.0[2]| + 3.0([2]~-1)
= 1.5+ 4.0°2 + 3.0(2-1)
= 1.5 + 8 + 3-1
= 9.5 + 3
= 12.5

Now We Explain the Shorter Way

within one plane, the !**'s plane. What we need is a method
covering all third-level planes. That is where the mass production
of + data for many planes comes in, and the shortcuts for getting
that data. Now that the patterning of +'s in a plane 1is
understood, we can better explain the streamlined technique for
extracting *+ parameters for a plane quickly.

What we have so far, then, is a method for predicting the #
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The Great Shortcut

For any given plane, we need to determine its starting #, that
repeats as the * for the first series in every column, and we need
the odd and even * spacings for columns, *“'c_,t+ and "*“'c_t. Since
the odd * spacinq is not constant, we need its own internal odd and
even spacings, "¢, .t and "*"V¢_, +. The great shortcut lies in
the fact that we can extract all of these parameters from just a
handful of strategically selected numbers in the upper left corner
of a plane's t* data.

At Most Just Seven Entries

At first glance we would only need seven * entries, the first
three columns supplying all seven entries: column 1l's first three

entries, column 2's first two entries, and column 3's first two
entries.

1%:4vS’s +’s Again

Let us again work with plane **'S's + entries to illustrate
this:
w v—> 1 2 3
1 1.5 1.5 1.5
2 -1.0 -0.5 0.5
3 2.0

Table 92. The upper left corner of the * map for **Vs

+ Spacings in a Column

Now, indicating the spacings between the * values in a column
we get:

w v=>_ 1 2 3
1 1.5 1.5 1.5
-2.5 -2.0 -1.0
2 -1.0 -0.5 0.5
3.0
3 2.0
Table 93. + map upper left corner with spacings shown.
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The value 3.0, the spacing between column 1's second and third
+ values, is the even t spacing constant for the whole plane,
154V +. The three odd * spacings shown, -2.5, -2.0, and -1.0, are
enough data for the extraction of the odd + spacing's own internal
spacings, V¢ .t and V¢ .. The change, moving across
columns, between the first odd spacing (-2.5) and the second (-2.0)
yields the odd internal spacing for odd * spacing, 0.5. Similarly,
the difference between the second odd * spacing (-2.0) and the
third (-1.0) gives the even internal spacing for odd * spacing,
1.0.

The Even and Odd Spacings

So we have the even *+ spacing (3.0) and the two components of
the odd + spacing (0.5 and 1.0). We also know the initial * value
for all columns, 1.5 So we have all of the information that we
need in order to predict any * value in this plane.

An Even Easier Way

There is an even easier way to get the spacing values, though,
which utilizes yet another shortcut. We need only four of those
seven * entries to extract the same information as we used the
seven entries for.

Down to Four Entries

We can dispense with the first entry in each of the three
columns, and need only use the second and third entries in column
1, the second in column 2, and the second in column 3, as in the
following example:

w v 1 2 3
2 -1.0 -0.5 0.5
3 2.0
Table 94. The key four * map upper left corner entries.

The Even and Odd Spacings

This time we take the spacings across columns in the first row
(w = 2), and continue to find the spacing vertically in column 1
(between w = 2 and w = 3) to yield:
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Table 95. Key + entry spacings.

The Same Results No Coincidence

Notice that the two horizontal spacings, 0.5 and 1.0, are
exactly the odd * spacing internal spacings found using the seven
+ entries. It can be easily proven that these two methods yield
the same values, thanks to the fact that each columns' first *+ is
the same value (in this case 1.5).

Proving No Coincidence Involved

If we call column 1's first two entries a; and a,, column 2's
b, and b,, and column 3's ¢; and ¢,, we need to show that (b, - b,) -

(a, - a;) = b, - a, and that (¢, - ¢;) - (b, - b;) = ¢, - b,. The key
is that a, = b; = ¢;. So, (b, - b;) - (a, - a;) =b, - b, - a, + a, =
b, - a,. Similarly, (¢, - ¢;) - (b, - b)) =c, - c; - b, + by = ¢, -
b,

Extremely Streamlined Data Generation and Pattern
Generalization

Armed with this extremely streamlined means of deriving the
important * parameters for a plane, the task of bulk data
collection could proceed mechanically and quickly. Having gathered
the data for 54 grandchild planes (one for each of the six columns
in each of the first plane's nine already documented child planes),
it was just a matter of tabulating the results and then
generalizing them to a + pattern holding across all 54 planes.

The Formula for Grandchild Plane +

The generalization became the following formula:

1:t:us
BUY £ = (N,A, - %G, )M,, + NGA,.

w—
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An lllustration

Again, let us work through an example to see this formula in
action. An obvious choice for a test case is plane **'s. Let us

pick family 10, series 4 within that plane, an example series that

we worked with earlier. At that time we derived its * as being
12.5. Let us see how the formula fares in arriving at that same
answer:
t =5
u =4
v = 10
w = 4
A, = [ts2] = |5+2] = [2.5] =2
A, = [u:2] = [422] = [2] = 2
A, = |vs#2| = |10+2] = |[5] = 5
A, = [we2] = [422] = (2] = 2
B, = [t+2] - 1 = [5+2] - 1 = [2.5] -1 =3 -1 =2
B, = [u#2] -1 = [4+2] -1 = [2] -1 =2-1=1
B, = [v#2] - 1 = [10+2] - 1= [5] -1 =5 -1 =4
B, = [w#2] - 1 = [422] -1 =1J2] -1=2-1=1
G, = 2(B-A,) + 1 =2(2-2) + 1 =2(0) +1=0+1=1
G, = 2(B,~A,) + 1 =2(1-2) + 1 =2(-1) +1=-2+ 1= -1
G, = 2(B,-A,) + 1 =2(4-5) + 1 =2(-1) + 1 ==2+ 1= -1
G, = 2(B,-A,) + 1 =2(1-2) + 1 =2(-1) +1=-2+ 1= -1
M, =AA, + G, =52 + -1 =10 - 1 =9
N, = %(3G, - A,) = %(3+1 - 2) = %(3-2) = %1 =}
lt;uvvwi = (NtAu - %Gu)MVw + NthAw
15:4:104i — (1/2.2 _ 1/2._1).9 + Le-1e2
= (1 - -%)+9 + -1
= (1%)+9 - 1
= 13.5 - 1
= 12.5
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A Quick Dip Deeper Than
the Grandchild Level

A Great-grandchild Family, >>%°§

As one last reassurance that the levels of planes desgend
endlessly, a dip down yet another level, to a "great-grandchild"
plane, was undertaken. The objective of the mission was to
determine whether series were actually begun by prospective serles-—
starting factor pairs in the sixth column in plane 1:5:5:6vg

1:5:5:6v§ Plane Construction

1:5:5:6:v

First, plane S was constructed:

-8282¢  -11220¢ 112200 -8282¢ 12280 21094

1:5:5:64 10281+ 16157+ 367190 42595+ 63157+ 69033«
13219« 1999]1999+13219 493713219 2549913219 34313+13219| 75437+ 13219|90127+ 13219
13219 49371999+ 4937 (4937 1999|25499« 1999|34313+ 493775437+ 25499|90127+ 34313
13219+ 25499[1999+25499 {4937+34313 | 25499475437 34313990127 | 75437151813 [ 901274172379
13219+ 34313 90127+235661
13219« 75437 90127+511793
13219+ 90127
132194151813
132194172379

Table 96. Plane ':2:9:6:Vg

The First Operand Pairs for Column 6, Series One Through
Five

Given the first three op2;'s in column 6 it was easy to find
the fourth and fifth op2;'s, 235,661 and 511,793 (based on the op2,

spacing coefficients 21094+, and 69033+ apparent between op2;'s one
through three).

Also, the opl spacing for all five prospective series was
known (and theligge for all five), being 90127's spacing in the
parent column ("°7"S) where it is an op2: 1222+, 987-.
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The Beginnings of the First Three Prospective Series

Similarly fortuitous to the boon bespowed above by.having the
first three op2,'s, having their op2 spacings from theilr roles.ln
the parent column gives us their op2 spacings here.as.well, which
in turn gives us all that we need to lay out the beginnings of each
of the first three prospective series:

Absolute
X Factors of f(x)
34,516 90,127+« 13,219
469+1 1801
34,985 91,349« 13,399
3772 1442
35,739 93,323+ 13,687
55,610 90,127+ 34,313
7531 4641
56,363 91,349+ 34,777
610-2 3772
57,583 93,323+ 35,531
124,643 90,127-172,379
16911 23401
126,334 91,349.174,719
136442 18852
129,062 93,323+178,489
Table 97. The first three series in column 1!%%66g,

The absolute-x values shown here were calculated, given the
factor pairs next to them.

X Spacing and op2 Spacing

The finishing touch on this boon was the straightforward
extension of these sequences for the first three (no longer
prospective) series to give us the x spacing and op2 spacing for
series four and five. Here is the x spacing data and the
extrapolation of it to give the values for series four and five:
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w> 1 2 3 4 5
469+« 284-1 753« 4692 1691 2843 1975+ 469-4 2913~
377« 233-1 610« 377°2 1364« 2333 1597+ 377+4 2351-

Table 98. Extension of x spacing to series four and five.

Similarly, for the op2 spacing data:

w= 1 2 3 4 5
180+ 284-1 464+ 9382 2340+ 284-3 3192+ 938-4 6944-
144 233-1 377+ 7542 1885« 2333 2584« 754-4 5600

Table 99. Extension of op2 spacing to series four and five.

The Beginnings of Series Four and Five

So, the first three factor pairs for series four and five were
simply filled in by deduction to give the following data,
fulfilling the objective of the experiment on fourth-level series:

Absolute
X Factors of f(x)
145,737 90,127+235,661
19751 31921
147,531 91,349+238,268
15972 25842
150,906 93,323+244,021
214,770 90,127+511,793
29131 69441
217,683 91,349+518,737
23512 56002
222,385 93,323+529,937

Table 100. Series four and five in column }®%%6g,
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z At Any Depth

Time to Find a Universal Formula for z

The time had come to try to find a set of general formulas
valid across the various levels of planes. The first parameter
investigated in this light was z.

z-Maps

The First Plane

A systematic mapping of z values for whole planes was begun.
The z-map for the first plane appears as follows:

Parent's z—» 1 0 2 1 3 2 4 3 5
41 41 1 1 1 1 1 1 1 1 1
41 1 0 -1 1 0 2 1 3 2 4
41+ 163 2 1 3 2 4 3 5 4 6
41« 43 1 -1 3 1 5 3 7 5 9
41+ 367 3 1 5 3 7 5 9 7 11
41+ 167 2 -1 5 2 8 5 11 8 14
41+ 653 4 1 7 4 10 7 13 10 16
41+ 373 3 -1 7 3 11 7 15 11 19
411021 5 1 9 5 13 9 17 13 21

Table 101. z-map for the first plane.

Left-to-right Increase

Note that the -1's in column 2 have been deduced from their
surroundings, in particular the patterns of z's moving horizontally
across the columns. To see these patterns clearly, when moving
across look at just the odd-numbered columns or at just the even-
numbered columns. There seems to be a left-to-right increase in
general.
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Plane '%'S

The z-map for plane '?7s is interesting:

Parent's z—» 1 -1 1 -1 1
1-41 0 0 0 0 0
141 1 -1 1 -1 1
1+43 1 -1 1 -1 1
1-43 2 -2 2 -2 2
147 2 -2 2 -2 2
1-47 3 -3 3 -3 3
1453 3 -3 3 -3 3

Table 102. z-map for plane '?Vs,

Adjusting '?'S’s Formula Given "'S’s

Here, the negative values would not be deduced in the same
way. Rather, once the individual formulas for z within planes
Llvg = 1l2vg = l3vg  ldvg  apnq Vg had been derived and generalization
to an overall formula for the group of planes '™¥S derived, the
formula for !?¥sS had to be adjusted to conform. The more
conforming formula gives the values in Table 102.

1.'3.'VS
The z-map for plane '*'s is:
Parent's z-» 1 1 3 3 5 5
163 41 2 2 2 2 2 2
163« 41 -1 -1 1 1 3 3
163« 367 3 3 5 5 7 7
163+ 367 0 0 4 4 8 8
1631019 4 4 8 8 12 12
1631019 1 1 7 7 13 13

Table 103. z-map for plane !3Vs.

1.'4:vS and 1...1:vs’ and 1:5:vs

Plane 'VS's z-map is identical to plane '!¥S's, and for that

matter plane '''¥g's, etc. Plane **¥'S's z-map is:
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Parent's z—+ 1 2 4 5 7
367 41 3 3 3 3 3
367 163 -2 -1 1 2 4
367+ 653 4 5 7 8 10
3671019 -1 1 5 7 11
3671999 5 7 11 13 17
3672609 0 3 9 12 18
3674079 6 ) 15 18 24
3674933 1 5 13 17 25
3676893 7 11 19 23 31

1:5:VS

Table 104. z-map for plane

1ﬁmSL 17vg
Plane *Vs's z-map equals plane *¥S's. Plane 'VS's z-map is:
Parent's z-» 1 3 5 7 9 11
653 41 4 4 4 4 4 4
653« 367 -3 -1 1 3 5 7
6531021 5 7 9 11 13 15
653+1999 -2 2 6 10 14 18
6533307 6 10 14 18 22 26
6534937 -1 5 11 17 23 29
6536899 7 13 19 25 31 37
6539181 0 8 16 24 32 40

Table 105. z-map for plane 7'g,

Diving Down to 7S

We also started diving down at this point to child planes of

plane 7¥s. Plane !¥%s's z-map is:

Parent's z— 4 -3 5 -2 6 -1 7 0 8 1
41+ 653 1 1 1 1 1 1 1 1 1 1
41+« 367 3 ~4 4 -3 5 -2 6 -1 7 0
411021 5 -2 6 -1 7 0 8 1 9 2
41« 163 7 -7 9 -5 11 -3 13 -1 15 1
411471 9 -5 11 -3 13 -1 15 1 17 3
41+ 41 11 -10 14 -7 17 -4 20 -1 23 2
41+2003 13 -8 16 -5 19 -2 22 1 25 4
41 1 15 -13 19 -9 23 -5 27 -1 31 3

Table 106. z-map for plane "!Vg,
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Negative and Half-negative z-columns

An interesting pattern to note here and elsewhere is the
occurrence of z-map columns containing consecutive negative values
having parent z-values that are negative. And, those columns with
alternating negative and positive values have a parent z of zero.

1:7:2:v£;
. 1:7:2:ve .
Here 1is plane S's z-map:
Parent's z» 4 -1 7 2 10 5 13 8
367« 653 3 3 3 3 3 3 3 3
367+ 41 1 4 4 -1 7 2 10 5
36741999 7 2 10 5 13 8 16 N
367+ 163 5 -5 M 1 17 7 23 13
367+4079 11 1 17 7 23 13 29 19
3671019 9 -6 18 3 27 12 36 21
36746893 15 0 2 9 33 18 42 27
367e2609 13 -7 25 5 37 AT 49 29

Table 107. z-map for plane

z-spacing Maps

z-spacing Maps for These Same Planes

With this data to work with, it was now time to look for
patterns across these planes and across the few levels so far
represented. The next analysis was to extract the spacings between
Zz's in a plane, to form a z-spacing map for each plane. The z-

spacing maps for the planes whose z-maps comprise Tables 101-107
are:

Parent's z- 1 0] 2 1 3 2 4
-1 -2 0 -1 1 0 2
2 2 2 2 2 2 2
-1 -2 0 -1 1 0 2
2 2 2 2 2 2 2

Table 108. z-spacings for !'s. z(w,) = 1.
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Parent's z- 1 -1 1 -1 1
1 -1 1 -1 1
0 0] 0 0 0
1 -1 1 -1 1
0 0 0 0 0
Table 109. z-spacings for '?'s. z(w;) = O.
Parent's 2z-— 1 1 3 3 5
-3 -3 -1 -1 1
4 4 4 4 4
-3 -3 -1 -1 1
4 4 4 4 4
Table 110. z-spacings for "*'s. z(w,) = 2.
Parent's z-— 1 2 4 5 7
-5 -4 -2 -1 1
6 6 6 6 6
-5 -4 -2 -1 1
6 6 6 6 6
Table 111. =z-spacings for °Vs. z(w;) = 3.
Parent's z-— 1 3 5 7 9
-7 -5 -3 -1 1
8 8 8 8 8
-7 -5 -3 -1 1
8 8 8 8 8
Table 112. z-spacings for Y™'s. z(w,) = 4.
Parent's z— 4 -3 5 -2 6 -1 7 0 8
2 -5 3 -4 4 -3 5 -2 6
2 2 2 2 2 2 2 2 2
2 -5 3 -4 4 -3 5 -2 6
2 2 2 2 2 2 2 2 2
Table 113. =z-spacings for “"¥g, z(w;) = 1.
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Parent's z- 4 -1 7 2 10 5 13 8
-2 -7 1 -4 4 -1 7 2
6 6 6 6 6 6 6 6
-2 =7 1 -4 4 -1 7 2
6 6 6 6 6 6 6 6
Table 114. z-spacings for Y™Vg. z(w,) = 3.

Please note that the z-spacing map for ''¥S is the same as the

one for VS, that the one for *'s is the same as the one for ;;VS,
and that the one for Y's is the same as the one for “*'S.
Therefore, they are not shown here.

Repeating Pair of Values

Looking at Tables 108-114, two key points become evident.
First, the z-spacings for a column repeat in an alternating pair
of values. For example, in column one of plane lvgrg z-spacing map
the two values -1 and 2 repeat as the odd and even spacings
endlessly. This regularity of z-spacings in a plane allows us to
simplify our search for z-spacing patterns for planes to just the
top two rows of z-spacings per plane.

First w’s z and Parent Column’s z

We also note down in a z-spacing map:

1) the 2z value for w=1 for the plane (recall that all columns'
first z's are the same for a plane)

2) the z value of a column's parent series.

Generating the z’s for a Column

Having the z value for w=1 for any column, coupled with the

column's z-spacings, gives us all that we need in order to generate
the z's for the column.

Column 1 of Plane 'S

For example, take column one of plane 'S again. Given that
its first w's z is 1, and given its z-spacings of -1 and 2, we can
derive its z's:
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-1
0
2
2
-1
1
2
3
-1
2
etc.

Table 115. Deriving z's for column one of plane 'Vs.

The Parent z

The parent series' z value above a column's z-spacings leads
the way to the breakthrough allowing determination of a general,
simple pattern to z-spacings and therefore z's in all planes at all
levels. This is the second point that becomes evident when looking
at Tables 108-114.

Row 2 of a z-spacing Map

Row 2 of the z-spacings in each plane has a constant value,
for example 4 in plane '3¥g. Adding row 1 to row 2 gives the
parent z above each column. Another way to look at this is to say
that the parent z's minus row 1 gives row 2. Yet another way to
say this is that the parent z's minus row 2 gives row 1.

How This Helps

Why is noticing this deceptively simple relationship between
the parent z's and row 2 such a breakthrough? Granted, we can
already know the parent z's for child columns being generated, but
how do we know the row 1 z-spacings and the constant row 2 spacings

in the child z-spacing map without finding all of the child z's
first?

The First w’s z

Notice that row 2's constant z-spacing value is always twice
the first w's z value for that plane. For example, again for plane
13¥g  row 2's constant z-spacing value is 4 (see Table 110), while
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the z value for all first series in the plane is 2 (z of "5 = 2
in Table 103).

Parent z and Constant ,z

All that we would need when coming into a plane in order to
predict all of its z's would be the child columns' parent z's and
the constant z value for the first series in each child column.
Given that constant z for the first series in each column in a
plane ("";z or ;z for short), we simply double it to get row 2. We
then have the even z-spacings for the plane. To get the odd z-
spacings we need only subtract the row 2 constant from the columns'
parent z's.

Grandparent z

So, do we know the constant z for each column's first series?
Yes. It is the parent column's own parent series's z value; in
other words the grandparent z value.

Examples with 7S and ""?¥S

To illustrate, let us look at planes Vs and '"?Vg., !Ml¥grg
child columns' constant first series' z is 1 (see Table 106). For
lane Y"?¥s it is 3 (see Table 107). Both planes' parent plane is
Tvg, Its z-spacing map contains its z-spacings and above the
columns, their parent z's (see Table 112). !'¥S's first column's
parent z is 1. I7vg1s second column's parent z is 3. These values
of 1 and 3, 2z values from YVsS's parent plane !’s, are the
grandparent z's of the constant z's of the first series in all of
the columns of planes s and 7?'s, respectively.

All That We Need Going Top-down

So, we now have all of the resources that we need to predict
a plane's z's ahead of time as long as we start at the first plane

and move down level by level to the plane of interest, storing
important parameters as we go.

Some Background Facts to Set the Stage

Before we show the end-result of this development, we will
first build up some background facts so that when the time comes
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to unveil the universal method for predicting z at any depth, the
logic of its derivation will flow flawlessly and smoothly.

Expressing z
First, let us express a z within a plane as we can now see it:

1 1...

— WY WY
zZ = 12 + codzAW + c.,zB,.

That is, 2z for a specific series w, within a specific column v,
within a given plane, equals the first z in column v, plus the
appropriate number (A,) times the odd z-spacing for the column,
plus the appropriate number (B,) times the even z-spacing for the
column.

Re-expressing z

Now, based on our deeper understanding of z-spacings and of
z for the first series in all columns in a plane, we can begin to
re-express the above equation:

l.v

12 = the plane's parent column's parent series's z
1.v _ o 1oV

CyZ = 2 12
1..v _ ' : 1 1..v

C,4Z2 = V's parent series's z - C,.Z

ev

This allows us to state:

1...touv _ l.tuv 1...tu 1...tuv 1...twv
wZ = 12+ ( vZ = 2 1Z2)A, + 2 12B,,

_ 1l..touwv 1...t:u _ 1..tuv 1...t:uv
= 12+ vZA, 2 1ZA, + 2 1Z2B,,

— 1..trurv _ 1. .tawv 1..tav 1...tu
2. 1Z2B,, 2 12A, + 12+ vZA,

— 1...t:u:v1z[2(BW _ Aw) + l] + 1...t:u ZAw

v

1...touv

- 1.
= 12G,, +

t:u
vZA

w
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1..tuv 1.t

Since 12 = z, we can state:

u

1. .t 1..¢
uv 7z =

An Example With 728,z

Let us illustrate this fact via example. Let us find z for

27:2: . . 1:7:2:8
lane 172”8 column 8, series 5, 1l.e. Z.
’ 5

1:7:2:8 1:7:2

_ 1.7
52 = 922Gy + 8ZAg

7 1:7:2
= 7, z[2(Bs~A;)+1] + sZA,

= Y z(2[([5+2]-1)-[5+2]1+1}) + "%z |5+2]
= Y z(2[([2.5]-1)-]2.5]1+1} + Y7?.z|2.5]
— 1:722{2[(3_1)_2]+1} + 1:7:282.2

= 1 z[2(2-2)+1] + 2.Y72z

_ 1.7 . . 1:7:2
= 221 + 2 82

_ 17 o 1i7:2
= T2 + 2 8z

For now, rather than deriving ng and Lh%z, we shall simply accept

their values from the tables for Vs and 'S, Tables 101 and 105
respectively. ng = the z for the second series in column 7 of the
first plane, = 3 (Table 101, column 7, item 2). L%%z = 8 (Table
105, column 2, item 8). So:

1:7:2:8 _ L7 o 1:7:2
52 = 22 + 2 8Z

3 + 28

3 + 16

= 19.

That this is the correct value can be verified by looking at item
5 in column 8 of Table 107.
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Recursion

Could we not calculate ng and L%%z in the same way? Yes.
And, we would eventually recurse back up to the first plane. We
could also begin at the first plane and descend to the z of
interest. This top-down approach is the heart of the method for
finding z at any depth.

Top-down

In our example of 7?8z, we might start by finding 'z, then
find ",z, then '"?;z, and finally 1:7:2

ez,
1
#
Using the z-spacing concept, the formula for lwz, a z in "the
first column," can be expressed as:

1 1 1
12 + c42A, t+ "c.zB,.

Given ',z = 1, 'c4z = -1, and 'c_,z = 2 by observation of the first

colunn,

z =1+ -1-A, + 2B,

2B, - A, + 1

2B, - 2A, + 1 + A,

2(B, - A,) + 1 + A,

G, + A,, or A, + G,.
The formula for lwwz is:

R 1:v l:v 1:v
codZAw + ceVZBw *
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1) 1“2 = ,z, the z of "the first series," the grandparent series
l.v _
of ,z, = 1
2) Yo,z = 242 = 2
3) Moz = Lz - Ye,z
=1z -2
= (G, + A,) - 2
Therefore:
Wz =1+ [(G, + A,) - 2]A, + 2B,

1+ (G, + A, - 2)A, + 2B,
=1+ (G, + A,)A, - 27, + 2B,

= 2B, - 2A, + 1 + (G, + A))A,

G, + (G, + A)A,.

Four Levels of Formula

We now have a formula for each level from "the first series"
down to any level, such as the third level of plane, as follows:

WZ = G, + A, just derived
v 7 = G, + (G,+A,)A, just derived
l:u:vwz — 1usz + 11“vaw general format
My oo Lt gy Lt ZA, general format

Re-expressing ',z

Can we re-express 1wa, for example, so that it fits the
general format that deeper z-formulas adhere to? Yes. Notice that
%w's coefficient in the formula for‘lzv z, (G,*A,), 1is equivalent to

w
2. Therefore, we can re-express 1”wz as follows:
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This form of expression fits nicely with the other z-formula
formats.

Final Re-expression

To be perfectly consistent, we could even go so far as to say

1
12G,, + ,ZA, and,

N
I

z = G, + ,2A

w

Top-down z At Any Depth

Formula Cascade

We are now ready to generalize our top-down method of finding
z at any depth. Given that "the first w" is level 1 (L1) and
equals 1:

Gy + Ay = 142

L1

Gry + 1128 = 122
112Gps + pzhp, = Lk 2
LlezGL4 + Ll:LZL?)zAL4 - L1:L2:L3L4
Ll:LstzGL5 + Ll:L2:L3L4ZAL5 — Ll:LZ:L.’)‘:L4L5
etc.

Chart 70. 2z at any depth.

1

An lllustration with 728z

Let us illustrate the use of this cascade method with an
example. For efficiency's sake, we will utilize the fact that for
all x, G, is 1 if x is odd, and -1 if x is even.



-1 + 4
3

1:7:2 _ 1 1:7
82 = 72Gg + 2Z2A4

4+Gg + 3R

4.-1 + 3+ |8+2]

-4 + 3-+4
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+ At Any Depth

+ Maps

The next step was to try to find a similar general method or
formula for * at any depth. The study began with the preparation
of * maps for planes, such as the * map for the first plane:

v= 1 2 3 4 5 6
41- 41 -0.5 -0.5 -0.5 -0.5 -0.5 ~-0.5
41 1 2.0 -1.5 1.5 -2.0 1.0 -2.5
41-163 1.0 -2.5 0.5 =-3.0 0.0 -3.5
41+ 43 3.5 -3.5 2.5 ~4.5 1.5 -5.5
41367 2.5 -4.5 1.5 =-5.5 0.5 -6.5
41-167 5.0 -5.5 3.5 =7.0 2.0 -8.5

Table 116. * map for the first plane.

+ Spacing Maps

The next step from there was to construct * spacing maps.
Remembering that we only need a minimal amount of information from
the upper left corner of a + map for a plane in order to find any
* in that plane, we can abbreviate + maps and their corresponding
* spacing maps to just a few entries. For example, we can condense
Table 116 to the following, yet be able to derive the rest of the
* map from the condensed version:

\% v 1 2 3
41+« 41 1 -0.5 -0.5 -0.5
4]« 1 2 2.0 -1.5 1.5
41163 3 1.0 -2.5 0.5

Table 117. Condensed version of the * map for the first plane.

And, with spacings:
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41+ 41 1 -0.5 -0.5 -0.5
2.5 -1.0 2.0
41 1 2 2.0 -1.5 1.5
-1.0 -1.0 -1.0
41163 3 1.0 -2.5 0.5

Table 118. Condensed * map for the first plane with spacings.

The * spacing map that can be made from this * map is:

v— 1 2 3
JW— W 2.5 -1.0 2.0
gW=oW -1.0 -1.0 -1.0

Table 119. Condensed * spacing map for the first plane.

A Reminder About Two Alternate Worlds

As a reminder, there are two "alternate" numberings for all
series, stemming from a choice back in the first plane between
using 2+, -1+ or O0O-, 1+ as the first family's opl spacing.
Depending on which way one numbers the series' (and planes') opl
spacings and op2 spacings, two alternative "worlds" result. Each
is equally viable and internally consistent. This alternate
numbering aspect will be featured prominently in the discussion to
follow.

Including Parent Alternate +

One enhancement that we can make to the * spacing map is to
include the column's parent series's alternate * value above the
column's * spacing values:

v—> 1 2 3
Alt-v's + - 1.5 -2.0 1.0
SW— W 2.5 -1.0 2.0
JW—yW -1.0 -1.0 -1.0
Table 120. * spacing map with parent series's alternate #*.
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Breakthrough

We are now ready to explain a breakthrough insight for #f's
analogous to the one for z's. Referring to Table 120, we can see
that the odd * spacings (,w-,w) are always the parent alternate t

minus the even * spacings. In other words:
2.5 = 1.5 - -1.0,

-1.0 = -2.0 - -1.0,
2.0 = 1.0 - -1.0,

for v's 1, 2, and 3 respectively. The even * spacings, always .
-1.0 in this example, are twice the + value of the first series in
each column (which is -0.5 for all columns in the first plane).

All That We Need

We therefore have all of the ingredients that we need in order
to predict any +* in a plane -- the first * in each column, the odd
* spacing, and the even * spacing. Given that in a top-down
approach such as was used with z we can know the parent alternate
*'s before we get to the plane of interest, all that we need is to
be able to find the first * for all columns in the plane of
interest and we are all set. Given the parent alternate *'s and
the first * in all columns, we can derive both the odd and the even
* spacings for the target plane.

The First + for All Columns

Is there any way that we can tell what the first % for all
columns is? Yes. And, this is the final insight necessary so that
we can construct our general cascade method for + at any depth.

Some Data Via Formula

During the process of discovering this final relationship,
some examples of t's of first series were collected for all columns
of various sample planes, via the formula for "™V t+. Since we are
focusing here on just the first series in columns, w equals 1 in
all of the following data:
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Plane

First * in All Columns
= First Row in Plane)

TI:Twv
1:1:2:v
1:1:3:v
1:2:1wv
1:2:2:v
1:2:3:v
1:3:1wv
1:3:2:v
1:3:3:v
1:4:1:v
1:4:2:v

nwn

-0.5
2.0
1.0

-0.5

-1.5

=-2.5

-0.5
1.5
0.5

-0.5

=-2.0
=-3.0

nNnunnnnnhhnnnun

1:4:3:v

Table 121. The first row of *'s for a sample of planes.

Data Arranged into an Array

Next, we arranged these values into an array:

u t— 1 2 3 4

1 -0.5 -0.5 -0.5 -0.5

2 2.0 -1.5 1.5 -2.0

3 1.0 -2.5 0.5 -3.0
Table 122. First row *'s arranged in an array.

A Striking Pattern

Next, happening to examine the "alternate" * map for the first
plane, a striking pattern revealed itself.

But First, Some Nomenclature

Alternating "Current"

Let us refer to the "world" that we have been working with to
this point as the "current" orientation, whereas the other equally
viable world can be called the "alternate“ orientation. If we are
working with current * maps of de51gnat10n‘”“Vw+, then the current
first plane * map for them is designated as 1t+ and the alternate

+ map would be ' + alt. Which numbering is current and which is
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alternate is strictly relative. Here is part of the map for hZi
alt:

W v 1 2 3 4
41- 41 1 i.5 1.5 1.5 1.5
41 1 2 =-2.0 0.5 -0.5 2.0
41-163 3 1.0 3.5 2.5 5.0

Table 123. Upper left corner of * map for I + alt.

Alternate Grandparent Plane

The first plane, with respect to a plane of series with
designation '™V S, can be considered the grandparent plane. The
"alternate" first plane just discussed 1is then the alternate

grandparent plane of those planes whose ;w * values appear in Table
122.

+ Plus Grandparent + alt

Now that our terminology is ready, we can return to the topic
of the remarkable tie-in. If we add each value Table 122 to the
value in the corresponding position in Table 123 we get:

1 2 3 4
1 1 1 1 1
2 0 -1 1 0
3 2 1 3 2

Table 124. 'V +'s added to 't alt's.

A Handle on the First + for All Columns

These columns of values are the beginnings of the columns of
z's for the first plane (whether "current" or "alternate"). We now

have a relation that we can use to find the * for all columns'
first series for a plane:

1:tuv 1:t 1:t
+ = -
1% w2 T alt.

u
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z’s Two Parts

With further investigation into this fascinating additional
relationship between z and *, we realize that

l..v _ 1l..v 1...v

w2 = Wt T L5 alt.
Therefore,
1..v 1...v _ 1l..v

w2 = #I alt = wie

How to Find a

I+

Let us now express how to find a #*:

Vo ,t+ = parent * alt - !“Vc_+ (recall "Breakthrough'")
parent * alt = ' + alt

v—

“C,t = twice the * for all columns' first series

=2 o 1 "li
So,
1...v _ 1l..u _ 1...v
C 4t vi alt 2 P
And,
1..v _ 1. _ 1.t
X = w2 g alt
or
= L.t 4
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So,

1...vCOdi _ 1...uvi_ alt - 2.1...tui

And,

v + = 2 o 1 t 4

Finally,

1...vwi — 1...t;u1L + (1...uvi alt - 2'1...tui)Aw + 2’1".tuiBw

1.t l.u 1.8 JLot
= + + MU+ alta, - 2.Vt A, + 2.0 2B,

u—

1.t 1.t 1..¢ l...u
= 2+0F 4B - 20t 4+ TN E 4 + alta,

v

1..t l..u
= 1t +[2(B, - A,) + 1] + + alta,

v—

= 1...% +G + 1...u + altAw.

uT Tw v—

Making the Abstract Concrete

Six Tables per Level for 234§

Let us illustrate these abstract relatlonsh%Ps by following
the path from the first plane down to series S, showing the
following tables at each step of the descent:

series-starting factor pairs
z's

t's

* spacings

alternate *'s

alternate * spacings.

The First Pair -- The Apex

The very apex of this number universe is the single factor
pair 41+41, "the first pair," which has no z, no *, nor any of the
other attrlbutes that we will lay out. It is designated by ;S,.
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The First Series

The next level down, "the first series," begins with 41-41.

It is designated by ;S:

Series- + t alt
Designation starter yA * Spacing + alt Spacing
.S 41+41 1 -0.5 n/a 1.5 n/a
Table 124. The first series.
The First Family
Next comes "the first family," 1WS:
Series- + + a}t
starters 4 + Spacing + alt Spacing
41 41 1 -0.5 1.5
2.5 -3.5
471 1 0 2.0 -2.0
-1.0 3.0
41163 2 1.0 1.0
2.5 -3.5
41+ 43 1 3.5 -2.5
-1.0 3.0
41367 3 2.5 0.5
2.5 -3.5
41167 2 5.0 -3.0
-1.0 3.0
41653 4 4.0 0.0
Table 125. z's, 1's, and * alt's for the first family.
The First Plane
Next comes "the first plane," '“s:
410 41 | 410 41 141 163 41 43¢ 41 367e 41 167e 41 653 41
41¢ 1 | 41 1 1e41  163s 41 43e 1 367« 163 167+ 43 653« 367
410163 | 412163 143 163e 367 43167 367 653 167+ 373  &53+1021
41¢ 43 | 410 43 1643 163 367  43e 47 36741019 167+ 379  653¢1999
410367 | 414367 147 1631019 430379 36741999 1671039 6533307
410167 | 410167 1947 16301019 430179 36742609 1671049 6534937
410653 | 414653 153 16301997 430677 3674079 1672039 6536899
410373 | 419373 1453 16321997 434397 3674933 1672053 65349181

Table 126. Series-starting factor pairs in the first plane.
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Parent's z-» 1 0 2 1l 3 2 4 3 5
4] 41 1 1 1 1 1 1 1 1l 1
4] - 1 0 -1 1 0 2 1 3 2 4
41+ 163 2 1 3 2 4 3 5 4 6
41 - 43 1 -1 3 1 5 3 7 5 9
41+ 367 3 1 5 3 7 5 9 7 11
41+ 167 2 -1 5 2 8 5 11 8 14
41+ 653 4 1 7 4 10 7 13 10 16
41« 373 3 -1 7 3 11 7 15 11 19
411021 5 1 9 5 13 9 17 13 21
Table 127. z's for the first plane.
vo 1 2 3 4 5 6
41¢ 41 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
41¢ 1 2.0 -1.5 1.5 -2.0 1.0 -2.5
410163 1.0 -2.5 0.5 -3.0 0.0 -3.5
410 43 3.5 -3.5 2.5 -4.5 1.5 -5.5
410367 2.5 -4.5 1.5 -5.5 0.5 -6.5
410167 5.0 -5.5 3.5 -7.0 2.0 -8.5
Table 128. +'s for the first plane.
V- 1 2 3 4 5 6
Wo— W 2.5 -1.0 2.0 -1.5 1.5 -2.0
W= W -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Table 129. * spacings for the first plane.
W v=> 1 2 3
41 41 1 1.5 1.5 1.5
41 - 1 2 -2.0 0.5 -0.5
41+163 3 1.0 3.5 2.5

Table 130. Alternate *+'s for the first plane.

v 1 2 3 4 5 6
Wo— W -3.5 -1.0 -2.0 0.5 -0.5 2.0
W W 3.0 3.0 3.0 3.0 3.0 3.0

Table 131. Alternate * spacings for the first plane.
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Child Plane 'S

. 1:2:
Next comes child plane ““VS:
1941 410 1 4le 1 43¢ 1 43¢ 1 47e 1 47+ 1 53¢ 1
Te41 41 41 41e 41 43e 41 43e 41 4Te 43 4Te 43 53 47
1e43 410 43 41e 43 43¢ 47 43e 47  47e 53 47+ 53 53 61
143 410163 410163 43e167 430167 47179 47179 53199
1647 410167 410167 430179 43e179 47199 47199 53227
147 410367 416367 430379 430379 47e409 479409  53e457
Table 132. Plane 1723V,
Parent's z-» 1 -1 1 -1 1
1-41 0 0 0 0 0
1«41 1 -1 1 -1 1
1-43 1 -1 1 -1 1
1+43 2 -2 2 -2 2
147 2 -2 2 -2 2
147 3 -3 3 -3 3
153 3 -3 3 -3 3
Table 133. z's for plane ?Vs.
W v+ 1 2 3 [ 5 [
1 2.0 2.0 2.0 2.0 2.0 2.0
2 -0.5 -1.5 1.5 0.5 3.5 2.5
3 3.5 2.5 5.5 4.5 7.5 6.5
4 1.0 -1.0 5.0 3.0 9.0 7.0
5 5.0 3.0 9.0 7.0 13.0 11.0
6 2.5 -0.5 8.5 5.5 14.5 11.5
Table 134. +'s for plane 1:Z:VS.
2+ alt - 1.5 0.5 3.5 2.5 5.5 4.5
\Vind 1 2 3 4 5 6
WO W -2.5 -3.5 -0.5 -1.5 1.5 0.5
W T W 4.0 4.0 4.0 4.0 4.0 4.0
Table 135. + spacings for plane %7g,
W v 1 2 3 4 5 6
1 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
2 1.5 0.5 -0.5 -1.5 -2.5 -3.5
3 -2.5 -3.5 -4.5 -5.5 -6.5 -7.5
4 1.0 -1.0 -3.0 -5.0 -7.0 -9.0
5 -3.0 -5.0 -7.0 -9.0 -11.0 -13.0
6 0.5 -2.5 -5.5 -8.5 -11.5 -14.5
Table 136. Alternate t's for plane 1:Z:VS.
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2+ -+ -0.5 -1.5 -2.5 -3.5  -4.5  -5.5
v— 1 2 3 4 5 6
W - W 3.5 2.5 1.5 0.5 -0.5 -1.5
W o- W -4.0 -4.0 -4.0 -4.0 -4.0 -4.0
Table 137. Alternate t spacings for plane '*'s.
Grandchild Plane 23vS
Finally, we arrive at grandchild plane '?*Vs:
v 1 2 3 4 5 6
430 1 1043 41e 43 47e 43 167« 43 179¢ 43 379+ 43
43e 41 1041 41e 1 470 1 167+ 41 179+ 47 379+ 167
430 47 1047 410167 474179 167+ 379 179¢ 397 379+ 677
439167 1029 41e 41 47+ 53 167+ 373 179 409  379+1049
43179 1041 41373 474409 1671049 17941109 37942069
434379 131 410163 474199 1671039 17941129 379+2689
Table 138. Plane ':2i3%Vs,
w v=> 1 2 3 4 5 6
1 1 1 1 1 1 1
2 -1 0 0 1 1 2
3 1 2 2 3 3 4
4 -1 1 1 3 3 5
5 1 3 3 5 5 7
6 -1 2 2 5 5 8
Table 139. =z's for plane '?37Vg,
W v 2 3 4 5 6
1 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5
2 0.5 2.0 -2.0 -0.5 -4.5 -3.0
3 -4.5 -3.0 -7.0 -5.5 -9.5 -8.0
4 -1.5 1.5 -6.5 -3.5 -11.5 -8.5
5 -6.5 -3.5 -11.5 -8.5 -16.5 -13.5
6 -3.5 1.0 -11.0 -6.5 -18.5 -14.0
Table 140. +'s for plane 1 2:3:\/5.
1:2:3+
,I alt - -2.0 -0.5 -4.5 -3.0 -7.0 -5.5
V= 1 2 3 4 5 6
Wo— W 3.0 4.5 0.5 2.0 -2.0 -0.5
WO W -5.0 -5.0 -5.0 -5.0 -5.0 -5.0
Table 141. + spacings for plane '23Vg,
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: 3.5 3.5 3.5 3.5 3.5 3.5
2 -1.5 -2.0 2.0 1.5 5.5 5.0
3 5.5 5.0 9.0 8.5 12.5 12.0
4 0.5 -0.5 7.5 6.5 14.5 13.5
5 7.5 6.5 14.5 13.5 21.5 20.5
6 2.5 1.0 13.0 11.5 23.5 22.0
Table 142. Alternate #'s for plane 1:2:3”8.
123 4 2.0 1.5 5.5 5.0 9.0 8.5
Ve 1 2 3 4 5 6
MWW -5.0 -5.5 -1.5 -2.0 2.0 1.5
W oW 7.0 7.0 7.0 7.0 7.0 7.0
Table 143. Alternate * spacings for plane '??Vs,

Lineage and Descent of a +

Armed with our tables we can now point out how the * for a

series ties in with its lineage and descent from the first plane
and above.

Beginning at the Bottom: %34S

Let us recall that our example here is Lm&%s. Working from
the bottom up, refer to Table 138, the series-starting factor pairs
for plane !%3Vg Our example's series-starter is therefore column
4, item 5: 167-1049. 2z, from Table 139, is 5. One * is -8.5 while

the other is 13.5, each being the other's alternate. Note that the
sum of the two *'s equals z, 5.

Converting + to op2 Spacing

Just to tie this abstraction of * back into reality, we can

translate the two +'s to op2 spacings._ This involves the reversal
of the process that translates op2 spacing to %, for example:

op2 spacing z spacing+z z+2 spacing+z - z3i2 (= )
152~ 8
19 9.5 -1.5
209~ 11

Table 144. Sample conversion of op2 spacing to %
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In reverse, given * and z, this would be:

(odd) i ?+2 1:9:6 o .
+ (= spacingtz - z+2) z zZ+2 (= spacing=z) op2 _spacing
8 152
-1.5 19 9.5
11 209«

Table 145. Sample conversion of + to op2 spacing.

A General Conversion Formula

A general formula for translating * to op2 spacing is:

op2 spacing = (z2 * 2z + "i"):2,

For example,

198 s op2 spacing = [19% + 219 (-1.5)]+2
[361 * 38+ (-1.5)]+2
(361 + =-57)+2
= (304, 418)+2
= 152, 209
- 152+, 209
Applying this same technique to our two *'s for

1:2:3:4 .
5S

1:2:3:4 (5% + 2+5+(~8.5)]+2
[25 = 10+ (-8.5)]+2
(25 + -85)+2

(=60, 110)+2

-30, 55

~+ =30+, 55

;S op2 spacing

[5 + 245+ (13.5)]+2
[25 + 10+ (13.5)]+2
(25 * 135)+2

(160, =-110)+2

80, -55

80+, -55-

Alternate op2 spacing

O I I |

Notice that the sum of the odd and even op2 spacing
coefficients in both cases is 25, z2.
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These op2 Spacing Values Give Two Alternative op2
Sequences

Applying these op2 spacing values in their real-world context,
they give us two alternative op2 sequences:

1049
-30-1
1019
55.2
1129
-30-3
1039
554
1259
etc.
1:2:3:4

Table 146. One alternative op2 sequence for series 5S .

1049
80-+1
1129
—552
1019
80+3
1259
-55+4
1039
etc.

Table 147. Another alternative op2 sequence for series Lm&%s.

These two op2 sequences would of course be paired with

appropriate opl sequences to yield proper operand pairs (factor
pairs).

+ Spacings and + alt Spacings

Returning to our main topic of cascading * values, let us look
at the * spacing and # alt spacing tables for '#¥%g,
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Even : Spacing vs. = for All Columns’ First Series

Notice that the even * spacing in Table 141, -5.0, is twice
the + value for all columns' first series in Table 140, -2.5. The
same holds for the even * spacing in Table 143, 7.0, vs. the % for
all columns' first series in table 142, 3.5.

Odd :+ Spacing vs. Parent : alt Minus Even + Spacing

Furthermore, note that each odd * spacing in Table 141 equals
the parent v's * alt value minus the even * spacing. For example,
for v=1 the odd * spacing, 3.0, equals the parent v's = alt, -2.0,
minus the even * spacing, -5.0, In short, 3.0 = -2.0 - (-5.0).
The same rule holds for the odd * spacings in Table 143.

All Columns’ First + vs. Grandparent &

Finally, those * values that are constant for all columns'
first series in Tables 140 and 142 equal the grand;arent series'
+ values. The grandparent series for '?*%s 'is ';s. Refer to
column 2, item 3 in both Tables 128 and 130. The * wvalues there

are -2.5 and 3.5, respectively.

Another Example

For another example of this last effect, note that the
constant * value for all columns' first series in Tables 134 and
136 are 2.0 and -2.0, respectively. These * maps are the alternate
Yersions for plane '*'s. The grandparent series for series '*V s is
»S. Refer to Table 125, le (the first family). Under the column
for +*, item 2 is "2.0". Under * alt, item 2 is "-2.0."

Recapping the Recursive Method for Finding Any =

To recap, then, the general method for finding any % value,
the recursive formula

1.ty + = 1.t +G + 1...t:u + alt Aw

w uT Tw \a

will give the two correct alternate * values.
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A Final Note on Usage

One final note on usage follows. We define two precursor *
items:
¥, = (0.5, 1.5)
i+ = (-0.5, 1.5).

,* is at least intuitively meaningful as the * for "the first
series." |+, is not as easy to interpret, since S, is not a series

but simply a single factor pair, "the first pair," 41-41.

Re-expressing the Method as a Cascade

These two precursor items are used to express lwi in a form

consistent with the expressions for all deeper levels:

1 —
+ = +G, + ,* alt A,
l.v _ 1
+ =G, + 1+ alta,
lucy _ 1 1:u
="+ G, + ", alt A,

and so on.
In general, again, the formula is:

Loty 4 Lot g~ 4 lebu 4 oy A, .

u w VT

A Sample Calculation for 2344

Let us work through a sample calculation of a * value. The
two alternate choices of value at any given point are separated by
a comma. The "alt" of any pair of values (a,b) is simply the

reverse (b,a).
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+. = .+

1=1 1—-
= (-0.5,1.5)
1
4 = ;+,G, + ;= alt 3,

= (-0.5,1.5)+-1 + (1.5,-0.5)°1

(0.5,-1.5) + (1.5,-0.5)

(2.0,-2.0)

1:2 _ 1
+ = 4G, + L, alt A,

(-0.5,1.5)+1 + (-2.0,2.0)-1

(-0.5,1.5) + (-2.0,2.0)

(-2.5,3.5)

1:2
,2G, + Mt alt A,
= (2.0,-2.0)+-1 + (3.5,-2.5)2
= (-2.0,2.0) + (7.0,-5.0)

= (5.0,-3.0)

1:2:3:4 - 12 1:2:3
4 o= 2t + 3+ alt A

(-2.5,3.5)+1 + (-3.0,5.0)+2

(-2.5,3.5) + (-6.0,10.0)

(-8.5,13.5)
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The First Factor Pair for Any Series

The Last Ingredients Needed -- op1; and op2;

One final area of this work needs generalization before a
thoroughly general method for finding factor pairs anywhere in the
plane-world would be complete. We need a way to find the first
factor pair for any series. Thus, we need a method for finding
1...vwop11 and 1...vwop21 .

op1,’s and op2,’s for a Family

We know that the first opl is the same for every series in a
family (column), so that should be fairly straightforward to
predict. What about first op2's in a family? They progress via
odd and even spacing. The odd and even spacing values are
available from just the first three values in an_op2, sequence.
Refer to Table 70, the series-starters for plane '*¥S. Note that
the op2; spacings for each column appear above the column. As a
memory refresher, column 1's spacings of -204+ and 245+ give us the
op2; sequence:

odd op2; even op2,
op2, spacing spacing
367
-204-1
163
245+ 2
653
-204-+3
41
2454
1021
etc.

Table 148. op2,; sequence for family 1%1lg with op2, spacing.

The Sum of the op2, Spacings

So, we need a method for arriving at the opl,, the first op2,,
and the op2,; spacings for a target column, in order to predict any
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opl,/op2, combination in the column (family) . Another.fasc%nating
relationship that will help streamline these calculations is that
the sum of the odd and even op2; spacings for a column equals the
opl, value. For example, referring again.to Table 70, column 1l's
opl, is 41; the sum of the op2, spacings is -204 + 245 = 41. The
same relation holds for the rest of the columns in Table 70, and
indeed for all columns in all planes.

The op1, and the First Two op2,’s

So, if we know the opl, for a column and just the first two
op2,'s, then we have enough information to get our four goal items.
We have the opl; for the column and the first op2,. The odd op2,
spacing is the difference between the first and second op2,'s.
Finally, the even op2,; spacing is the difference between the opl,
and the odd op2,; spacing, since the odd op2, spacing plus the even
op2; spacing equals the opl,.

The Threading Tying Parent and Child Columns

So, how do we predict the opl; and the first two op2,'s of a
column? Recalling our work on generating a child plane from a
parent column, let us illustrate the threading tying parent columns
to child columns. This will give us the insight that we need to
see how to predict child opl,'s and op2,'s.

The Example of Column 74§

SuPRPse that we want the opl, and the first two op2;'s for
column 7S Let us list some information as follows:

Column !s Column *’s Column }"“g

41« 41 653 41 1999-. 653

41 - 1 653« 367 1999- 367

41-163 6531021 1999+ 4937

41+ 43 653+1999 1999+« 4079

41367 6533307 199913219

41167 6534937 199911789

41+653 6536899 199925499

Table 149. opl,'s and op2,'s for columns 's, !7s, ana '"s.

Now let us repeat this table with some arrows included to
indicate key relationships from parent column to child column to
grandchild column:
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Column !s column 'S Column Y7*s

1

Vv v
41 41 ——>653 - 41 >19G99. 653
4] - 1 653 367< 1999- 367<
41163 6531021 1999+ 4937
41« 43 6531999 1999+« 4079
41367 6533307 199913219
41167 6534937 199911789
41653 6536899 199925499

Table 150. Parent, childi'and grandchild connections between
columns 1S, 1‘7S, and s,

Parent op2,, op1,, and ,,0p2,

Notice that the opl, in child column 'S comes from op2,
number n in the parent column. The first op2, in a child column
comes from the oqlﬁ of the parent column. Finally, the second op2,
in child column 'S comes from parent op2, number n-2.

All Set

So, we can predict the items that we need for a child column
given the parent column. We are all set to specify our general
method for deriving any opl,/op2, pair:
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set

set

set

find

find

set
set
set
find

find

set
set
set
find

find

*1

*2

*3

*4

*5

*6

" o2y
" J0p24
op11
1w-2°p21

w°p21

:v1op21
1:v20p21
: op11

Y -29P21

1:v

w°p21

1:u:v10p21

1:u:v20p21

T:u:zv
op11
w-2°P21

Tiusv op21

' CoqoP2y =

2. =

2CevOP4y

1:v _
CodoP2q =

1

sus

Y .
cevopZ1 =

tuzv ~
CodoP2 =

Cev°p21 =

= 4§
= 1
= 41
1 1 *1 1 *2
= 40Py pCeqoP2y oGy p * € 02y *Dyp
1 1 1 o
= OP2q * pCoqoP24tC,  * 5Ce,0P21%Dy,
= 1op11 (previous )
= ,.p0P2, (three )
= 1Vop21 (lefthand sides)
N Y 1:v *3, 1:v *4,
- 1op21 * Cod°p2‘l Cu-2 * cev°p21 Dy-2
: 1: 1:v
= V1°p21 * VCod°p21°cu * Cev°p21'Dw
= 1:uop11 (previous )
= 1:uv_20p21 (three )
= 1:uvop21 (lefthand sides)
R HVHY Tzuzv *5, 1:uzv *6,
- 1op21 * cod°p21 Cu-a * cev°p21 o
_ Tl:uzv Tiusv . T:uzv o
- 19P2y * €od%P21°Cy * CevoP21°D,
etc.
1 op2, - Vop2, =1 -41 = -40
2°P 1°P2q
1 1 - - - =
op11 - 2codopZ1 = 41 (-40) = 81
1: 1:
Yoop2y - ¥ 0p2
T:v _ T:v
op11 codop21
:u:v20p21 _ 1:u:v10p21
IHHY R HYHY
op11 codop21

Chart 71. The general method for deriving any op11/op21 pair.
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Predicting Any Factor Pair

All Ingredients Present

We now have all of the ingredients that we need in order to
predict the factor pair at any location in the plane-domain that
we have been exploring all of this time. The combination of the

general methods for finding z, *, and opl,/op2, pairs is sufficient
for our task.

The Methods in Action

Let us show these general methods working in concert on an
actual problem, to fully illustrate their power and functioning.
our test will be to find the first few factor pairs for each of the
first five series in column '**%%g,

We will test the overall method against the data that we
already have for these series (refer to Tables 97 and 100).

Calculating the First Three Factor Pairs for the First Five
Series in Family °%68

2’s

Let us begin by calculating z for the five target series:

12 = 1

lz = G + ,zA,
=1+ 1.2
=1+ 2
= 3

15 — 1

52 = 12°Gg + zZ<A
= 11 + 32
=1+ 6
=7
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: _ 1 1:5
62 = 52Gg + "T5ZAg
= 3e=1 + 7°3

-3 + 21
= 18
1:5:5:66Z — 1:552G6 + 1:5.562A6
= T7e-=1 + 183
= =7 + 54
= 47
1:5:5:6:61Z — 1:5:562(;l + 1:5:5:6GzAl
= 18+1 + 47-0
= 18 + O
= 18
1:5:5:6:62z = 1:5:562G2 + 1:5:5:66zA2
= 18+-1 + 47-1
= =18 + 47
= 29
1:5:5:6:63Z - 1:5:562G3 + 1:5:5:66zA3
= 18«1 + 471
= 18 + 47
= 65
1:5:5:6:64z — 1:5:562(;4 + 1:5:5:662A4
= 18~-1 + 472
= -18 + 94
= 76
1:5:5:6:6sz — 1:5:562(55 + 1:5:5:66zA5
= 181 + 472
= 18 + 94
= 112

Next we will calculate the + values for these five series.
Before we do, though, we will make some observations about z.

Some Observations on z

When We Really Need z Now

When the + calculation method was first developed, inspired
by the then recent success in finding the general method for
finding z at any depth, the * calculations were pursued by using
z - + as A, 's coefficient rather than using + alt. By using * alt
instead, which is now better understood, there is no need to
involve z in the * calculations. The only time that z is needed
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in these general methods, it therefore turns out, 1is when
converting a * value to its corresponding op2 spacing values.

Do We Still Need the General Method for z?

Do we still need to use the general method for finding z's,
if only to help with *-to-op2 spacing conversions? No. Recall
that when we calculate a * value, the pair of values for * and *
alt add up to z. So, if we find % and * alt for a series, then we
have also found z. Therefore, we actually do not need to use the
general method for z any longer.

+’S

Continuing on, then, let us calculate the * values for the
five series in our test example:

i+ = (-0.5,1.5)
i+ = (-0.5,1.5)
1
ot = £.°G. + £ alteA,
= (-0.5,1.5)+1 + (1.5,-0.5)2
= (-0.5,1.5) + (3.0,-1.0)
= (2.5,0.5)
1:5 _ 1
s = 2+Gy + ;+ alt-A;
= (=0.5,1.5)+1 + (0.5,2.5)¢2
= (-0.5,1.5) + (1.0,5.0)
= (0.5,6.5)
1:5:5 1 1:5
ot = LEeG, + £ altea,

5,0.5)+=1 + (6.5,0.5)3
.5,-0.5) + (19.5,1.5)

’
.0,1.0)
1:5:5:6 _ 15 1:5:5
et = TgEeGy + ¢t alt-Ag
= (0.5,6.5)+=1 + (1.0,17.0)3
= (-0.5,-6.5) + (3.0,51.0)
= (2.5,44.5)
1:5:5:6:61i - 1556i G. + 1:5:5:66i_ alt'Al
= (17.0,1.0)+1 + (44.5,2.5)-0
= (17.0,1.0) + O
= (17.0,1.0)
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1:5:5:6:621_ 1:5:56i . G2 + 1:5:5:661_ alt 'Az
(17.0,1.0)+-1 + (44.5,2.5)-1
(-17.0,-1.0) + (44.5,2.5)
(27.5,1.5)

1:5:56i . G3 + 1:5:5:66i_ alt°A3
(17.0,1.0)+1 + (44.5,2.5)°1
(17.0,1.0) + (44.5,2.5)
(61.5,3.5)

1:5:5 1:5:5:6 .
¢t*G,y + ¢t altea,

(17.0,1.0)+=1 + (44.5,2.5)¢2
(-17.0,-1.0) + (89.0,5.0)
(72.0,4.0)

1:5:5 1:5:5:6
etGs + ot alte-Ag

(17.0,1.0)+1 + (44.5,2.5)+2
(17.0,1.0) + (89.0,5.0)
(106.0,6.0)

Reconfirming That These + Plus + alt Sums Equal the z’s

Before we convert these + values to op2 spacings, let us
reconfirm that the sum of these * and + alt pairs is equal to the
z for the given series:

Series Z tPair + Pair Sum
1560 5 18 (17.0,1.0) 18.0
15:5:6:6 5 29 (27.5,1.5) 29.0
15:5:6:6 g 65 (61.5,3.5) 65.0
15:5:6:6 76 (72.0,4.0) 76.0
15566 g 112 (106.0,6.0) 112.0
Table 151. z vs. sum of + and + alt for series 1:5:5:6:618 through 1:5:5:6:653.

t-to-op2 Spacing Conversions

The conversions of these * values to op2 spacing coefficients
are:

1:5:5:6:6 (22 + 2zeMEN) 12

[18% + 2+18+(17.0 or 1.0)]=2
[324 % 36+(17.0 or 1.0)]+2
[324 £ (612 or 36)]+2

[(324 = 612) or (324 * 36)]+2
[(936,-288) or (360,288)]+2
(468,-144) or (180,144)
(468+,-144+) or (180+,144-)

1S op2 spacing

I

N T T T |
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1:5:5:6:62S op2 Spacing

(2% £ 2z"£")+2

[292 # 2429+(27.5 or 1.5)]1+2
[841 * 58+ (27.5 or 1.5)]+2
[841 # (1595 or 87)]+2

[(841 + 1595) or (841 * 87)]+2
[(2436,-754) or (928,754)]+2
(1218,-377) or (464,377)
(1218+,-377+) or (464-,377¢)

1

1:5:5:6:635 Op2 Spacing

(22 £ 2zM£") 32

[652 + 2465+ (61.5 or 3.5)]+2
[4225 + 130+(61.5 or 3.5)]%2
[4225 + (7995 or 455)]+2

[ (4225 = 7995) or (4225 * 455)]+2
[(12220,-3770) or (4680,3770)]+2
(6110,-1885) or (2340,1885)

(6110+,-1885+) or (2340¢,1885¢)

Lo

1:5:5:6:6 (Zz + 22‘"1’")+2

[76% + 276+ (72.0 or 4.0)]+2

[5776 * 152+(72.0 or 4.0) ]2

[5776 *+ (10944 or 608)]+2

[(5776 = 10944) or (5776 * 608)]+2
[(16720,-5168) or (6384,5168)]+2
(8360,-2584) or (3192,2584)
(8360+,-2584+) or (3192+,2584)

4S op2 spacing

1

1:5:5:6:6 (ZZ + 2ze"EM) 32

[112% + 2112+ (106.0 or 6.0)]+2
[12544 % 224+ (106.0 or 6.0)]+2

[12544 * (23744 or 1344)]=+2

[ (12544 * 23744) or (12544 + 1344)]=2
[(36288,-11200) or (13888,11200)]+2
(18144 ,-5600) or (6944,5600)
(18144+,-5600+) or (6944+,5600¢)

S op2 spacing

1

Starting Factor Pairs for the Five Series

Let us now calculate the starting factor pairs for the five
test series:

lop2, = 41
1 -
,0p2;, = 1
lop1, = 41

1 1 1 1
5-20P2; = ",0p2; + "Cc40p2,°C;, + "C,0p2,°D;,
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1 1
1codopz1 = ,0p2, - 10P2,

1

cev

=1 - 41

= -40

_ 1 _ 1 2
Op21 - opll Codop 1

= 41 - -40

= 81

1 ,0p2, = 41 + -40+Cz, + 81+D;,

Dy =

41 - 40C, + 81D,

B, (By+1)
1-2
= 2

l.op2; = 41 - 401 + 81:2

41 - 40 + 162
= 163

1 1 1 1
s0pP2; = j0p2; + "c,;0p2;°C; + "C,0p2;°Dy

41 + -40-C, + 81+D,

= By (Bz+1)
= 23
= 6

lop2, = 41 + -40+4 + 81+6

khkkkkkkkkhkkhkhkkkhhkkhhkkhkkhkkhkkhkhhkhkhkkhkkhkhkkkxkkkkxkk

1

1

:5
20p2; =

41 -160 + 486
367

:5 1
10p2; = “opl,

41

1
5-20P 21
= 163

1:5 1
opl, = 50P2;

1:5

5

1:5 :
_20p21 = 1op21 + CoqOP2,°C5 , +

= 367

1:5 1:
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C,q0P2, =— 16230p_2141 10P2,
= 122
Pegop2, = ;:Zc;pl_l l-zzllscodop%
= 245
Cg = 1
D, = 2
1:5

®0p2; = 41 + 122-C; + 245+D,
= 41 + 122+1 + 245.2
= 41 + 122 + 490

= 653
C, = 4
Dy = 6
¥oop2, = "Plop2; + Yo op2,-C + e, 0p2,D;

= 41 + 122+C5; + 245D
41 + 1224 + 24546
41 + 488 + 1470

= 1999

khkdkkhkhkdkhkhkhkhhhkhhkhhkhhkdhkhkdrdkhkhkkhkhkhkkkhhhkhkhhkkkk
1:5:5 _ 15
10p2; = opl,
= 367

1:5:5 1:5
20P2; = "5;0p2;
= 653
1:5:5 1:5
Opll = 5Op21
1999

1:5:5 1 1:5: 1:5:

:5:5 5 5
6-20P2; = 10p2; + CoqOP2:°C4y + Ce OP2;°* D¢,

1:5 1:5:5

5 :5:5
Coq®P2; = ,0p2; = *7 0p2,
= 653 - 367

= 286

1:5: 1:5:5

5

C.,0p2;, = opl; -
= 1999 - 286
= 1713

1:5:5
codopz1
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4 (By+1)
*2

Il
N~

195 op2, = 367 + 286+4 + 17132
= 367 + 1144 + 3426

= 4937
:5: :5: 1:5:5 1:5:5
198 op2, = % op2; + C,q0P2;°C + c,,0p2,°Dg
Co = Aez
= 32
= 9

Dg = Bg(Bg+1)
2+3

= 6

L% op2, = 367 + 286+9 + 1713:6

367 + 2574 + 10278

13219

kkhkkkkhkhkkkkhkhkhkkkhhhkkkhhhkkkhhhhkkhkdhxhkkhkkkhkkkkkk

1:5:5:610p21 — 1:5:50p1l
= 1999
1:5:5:6 1:5:5
20P2; = 40P2;
= 4937
1:5:5:60pl1 _ 1:5:560p21
= 13219
1:5:5:6 _ 1:5:56 1:5:5:6 1:5:5:6
4Op2, = 10p2; + C,40pP2,°C, + C.,O0p2;*D,
1:5:5:6 1:5:5:6 1:5:5:6
Coa®P2; 20P2; - 10P2;
= 4937 - 1999
= 2938
1:5:5:6 _ 1:5:5:6 1:5:5:6
C,OP2, = opl; - C,q0pP2,
= 13219 - 2938
= 10281
c, = 4
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D, = 2

1:5:5:640pz1 = 1999 + 2938+4 + 10281-2
1999 + 11752 + 20562
34313

Ce = 9
Dy = 6
1:5:5:6 _
(OP2; = 1999 + 29389 + 10281+6
= 1999 + 26442 + 61686
= 90127
dhkhkdhhkkhkhkhkkrhkkhhkkkhkhkhhkkkhhkhkrhhkkkhkhkkhhhhkkkxx

1:5:5:6:6 1:5:5:6

10P2; = opl,
= 13219
1:5:5:6:6 1:5:5:6
20P2; = 40P2;
= 34313
1:5:5:6:6 1:5:5:6
opl, = sOP2,
= 90127
1:5:5:6:62op21 — 1:5:5:6:610p21 + l:5:t5:6:6€0dop21‘C2 + 1:5:5:6:6cev0p21.D2 .
(let's make believe that we don't already know this item)
1:5:5:6:6 1:5:5:6:6 1:5:5:6:6
CoqOP2; = 20P2; -~ 10P2;
= 34313 - 13219
= 21094
1:5:5:6:6 1:5:5:6:6 1:5:5:6:6
C.,0p2; = opl; - C,40pP2,
= 90127 - 21094
= 69033
c, = A,
= 12
=1

D, = B,(B,+1)
= 0.1
=0

lﬂ&&%opzl = 13219 + 21094+1 + 690330

= 13219 + 21094 + 0
= 34313

1:5:5:6:6 . 1:5:5:6:6 1:5:5:6:6 . 1:5:5:6:6
30p2; = 10p2; + C,q0pP2,°C; + C.,OpP2;° Dy

Cy =1
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D, = 2

L&&&%opzl = 13219 + 210941 + 69033-2

13219 + 21094 + 138066
= 1353370 1:5:5:6:6 1:5:5:6:6
LE566 oro = L lop2, + 108 opo Lo, 4 L5EEe opd LD
C, = 4
D, = 2

15566 op2, = 13219 + 21094+4 + 690332
13219 + 84376 + 138066

= 235661
1&&6%op2 _ L&&&%Op21_+]ﬁﬁﬁﬁcwopzlocs_+]$£££Cwop21.D5
C;, = 4
Dy = 6

f.op2, = 13219 + 21094-4 + 69033+6
= 13219 + 84376 + 414198
= 511793

Finding the op1 Spacing

There is just one more ingredient that we need to come up with
in order to finish our example. We need the opl spacing for the
family of series. Obtaining this is almost trivial. It is simply
the spacing for the opl wvalues when they were the parent op2

values. The opl Value for famlly s is 90127. It was the op2,
value for series **® S. That series's op2 spacing is a functlon
of its + wvalue. ThlS could be computed directly or, if the %

calculations have already been done, picked right from them.

The op1 Spacings

Lsis Since we have done the * calculations, let us just extract

¢S's * value from them: (2.5,44.5). We use the same *-to-op2
spa01ng conversion process here, even though we are converting to
opl spacings. One note of importance: we use the alternate + to
line up the proper opl and op2 spacings in the target series. z
= 2.5 + 44.5 = 47.0.
LHUY op1 spacing = (22 + 2z % alt)s2
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15:5:6:6 opl spacing = [472 + 2¢47+(2.5 or 44.5)]1%2

[2209 * 94+ (2.5 or 44.5)]+2

[2209 * (235 or 4183)]+2

[ (2209 * 235) or (2209 * 4183)]+2
[(2444,1974) or (6392,-1974)]+2
(1222,987) or (3196,-987)
(1222+,987+) or (3196+,-987¢)

{

Result Summary

Summarizing the results of our calculations for the five 1%%66g

series, we have found that

opl, for all five series is 90127

the op2,'s are 13219, 34313, 172379, 235661, and 511793
the opl spacing is 3196-,-987- or‘}%%2:,987-

and the op2 spacingém;régw‘%?W“W“'zp
468+ ,-144+ or 180-,144-
1218« ,-377+ Or 464+ ,377-
6110-,-1885+ or 2340-,1885-

8360+ ,~2584+ or 3192-,2584-

18144+ ,-5600¢ or 6944-,5600-.

Our Calculations Work

By referring now to Tables 97 and 100 we can readily see that
our opl, and op2; values match perfectly those derived earlier. We
can also see that the opl spacings and op2 spacings in Tables 97
and 100 match the second choices in our "or's" above.

Finding Any Factor Pair

So, we see that our general calculation methods do indeed
work. Where do we stand, then?

We have general calculation methods for generating any factor
pair desired:
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l.v _ 1l.v 1..v 1
1 woplx - 1 wopll + wcodopl.Aﬁ( +

" CeyOP1* B,
Vwopzx

Vwopzl + VWCOdop2 .A.x + ...Vwcevopz ‘Bx.

1 1

Find the series starting factor pair,
using the method of Chart 71 (see page 149).

Find the op2 spacing coefficients for the series, L”wcwopz and
L”wcwopz, using the method for arriving at the * values detailed
under "Re-expressing the Method as a Cascade" on page 144. Then
convert the resulting * value to op2 spacing as described in
"Converting * to op2 Spacing" on page 140 (remember that z is equal
to the sum of the two alternative t values found -- this will be
useful when using the conversion process).

Finally, the opl spacing values for the series, L”wcmopl and

VwCeyOP1l, are available from the t+ calculations just done -- the

opl spacings are the same as the op2 spacings for the parent series
(see "opl Spacing from Parent op2 Spacing" on page 97).
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Open Questions

Certain questions remain. Are all composite outputs of X+ x

+ 41 accounted for by this "plane-world" of factor pairs? 1Is there
any way to leverage this knowledge to tell if a given output of x?
+ X + 41 is prime or not? Can this same methodology be used to
investigate other x> + x + c output series, each such formula
possibly having its own "plane-world"? Finally, what insight can
this work contribute to our understanding of the onset of chaos?
Only time and further work will help us tell what the answers to
these questions are.
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spacing
op21:41
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spacing
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spacing
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spacing
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op
spacing

Appendix A -- Family Parameter Charts

1 1

1S S =S .S S .S
- — (4 D & > &—
40 81 122 163 204 245
4141 410163 410367 41653 411021 4101471
1¢1,3,5.. 1e 1e 1e Te 1e
Q2,4,6.. 1 2° 3. 4o 5e
1 2 3 4 5 6
2¢1,3,5.. [ be 8e 10e 12¢
-1e2,4,6.. Qe 3 _8e 15 24
1 4 9 16 25 36
141-0 4241-1 Qe41-2 16+41-3 25+41-4 36041-5
1e41-1 2041-1 3e41-1 b4eb1-1 5e41-1 6e41-1
0e1,3,5
1e2,4,6
1
Chart 1. Family 1NS.

_213 225 233 243 258
244 407 570 733 896
163367 1631019 1631997 1633301 1634931

51,3,5.. Qe 13 17 21e
1e2,4,6.. 1 1e 1e 1.

6 10 14 18 22
61,3,5.. 20 420 72 110Qe
3e2,4,6.. 3¢ A _9e AN
9 25 49 81 121
9e41-2 25941-6 49e41-12 81¢41-20 121¢41-30
6941-2 10041-3 14e41-4 18¢41-5 22¢41-6
4e1,3,5...
0e2,4,6...
4
R 3 - . 2
Chart 2. Family “S (originally wS).
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op2
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x1:41
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spacing

s 3,8 i 58 Sss
244 489 611 856 978
3674163 3674653 3671019 3671999 36722609
5e1,3,5 7e 11e 13 17¢
12,4,6 5. e 8- 7
6 12 15 21 24
41,3,5.. 8e 20e 28 480
0e2,4,6.. 8 2 21 16e
4 16 25 49 64
4e41-1 16941-3 25+41-6 49¢41-10 64941-15
6941-2 12¢41-3 15¢41-4 2141-5 24¢41-6
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Chart 3. Family W (originally WS-
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e 28 35
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4 12 20
op2 0e1,3,5 be 10e
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Chart 4. Family 7NS (originally 4NS).
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spacing

op2
spacing
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op1
spacing

s bos bos “s bes b s
163 489 816 1142 1469 1795
653941 653367 65301021 6531999 6533307 65394937
1¢1,3,5... 7o Qe 15 170 230
3e2,4,6... 5o e 13¢ 19e 21
4 12 20 28 36 44
0e1,3,5... 6e 10e 28e 360 66
102,4,6...  3» 15e 21+ 45¢ _55¢
1 9 25 49 81 121
141-0 Qe41-2 25¢41-4 49¢41-10  B1e41-14 121e41-24
b4e41-1 12¢41-3 20414 28¢41-6 36041-7 44041-9
8¢1,3,5..
_Be2,4,6..
16
o7 L. 4
Chart 5. Family NS (originally NS).
_513 523 533 545 555 565
204 816 1225 1837 2246 2858
102141 1021653 10211471 10213307 102104943 10218003
1¢1,3,5... Qe e 19¢ 21e 29
492,4,6... 11 19¢ 26 4o 41e
5 20 30 45 55 70
0e1,3,5... 8e 12e 36e bbe 84
1e2,4,6... 8¢ 2bs 45° (7 112
1 16 36 81 121 196
1¢41-0 16941-3 3641-5 81¢41-14 121041-18 19641-33
5¢41-1 20041-4 3041-5 45¢41-8 55041-9 70041-12
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15e2,4,6
5
. [+] A 5
Chart 6. Family NS (originally HS).
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op2
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op21:41
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spacing

1
operands
X

spacing

op2
spacing
op21:41
x1:41

opt
spacing

5 5 48 S ¢S
81 122 163 204 245
41163 41367 41653 411021 411471
Ze Se g Qe 11e
io :_2. -3 ic j.
2 3 4 5 6
be 12¢ 24e 40e 60+
0 -3 8o 5. 2he
4 9 16 25 36
4e41-1 9e41-2  16941-3  2541-4  36°41-5
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Chart 7. Family 1NS.
18 ' 's ls 'S
(4 - “ - O
0 81 41 122 82
411 41163 47043 41367 410167
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Qe 4o -2 [ -4e
go go éo éo §t
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0e41+1 4e41-1 104142 9e41-2 404143
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Chart 8. Family 1NS.
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X1
operands
X
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op2
spacing
op21:41
x1:41

opl
spacing

_2s 2,8 2. 2s 28 2
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163441 16341 1630367 163367 16301019 1631019
11,3,5.. 3e 5e 7e Qe 11e
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2 2 6 6 10 10
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10 15
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4 9
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spacing _52,4,6
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Chart 10. Two series in a prospective 1019 family.
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X4 407

operands 1019163

X 9e1,3,5...
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4

op21:41 4e041-1

611 1426 1630
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6o 42 480
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49e
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25
Chart 11. The 1019 family.
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(4 g b g =4 L®
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spacing -1¢2,4,6.. 1. e 1e e 1.
0 0 0 0 0
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spacing  -12,4,6 1 23 3¢ 5 3¢
1 1 1 1 1 1
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x1:41 041-0 0e41-0 0e41+1 0e41+1 0e41+2 0e41+2
op1 .

01,
spacing 0e2,
0

1:2 s.

Chart 12. Family W
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op2
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op21:41
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spacing

X1
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X

spacing

op2
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op21:41

x1:41
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spacing
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40 0 81
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0e2,4,6.. 1e 1e
1 o] 2
0e1,3,5 0e 4o
12,4,6 g g
1 0 4
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Chart 13. Family 1:1:1
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18 28 38
0 0 1
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Chart 14. Family 1:1:2
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W
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Chart 19. Family 1:2:1HS.
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Chart 20. Family 1:2:2NS.
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Chart 26. Family 133°2 5.
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Chart 30. Family 1:3:6NS.
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Appendix B -- Casio Calculator Programs

Program 1 - Given a factor pair, find the x that gives their
product when it is plugged into X2 + x + 41

Mcl: /* clear memory

WAY A /* prompt for and store factor A

"B":?-B: /* prompt for and store factor B

(/(AXBx4-163)-1)+2a4 /* find x and output it

Program 2 - Given the initial absolute x and the next opl in a
series, find that next factor pair's absolute x and
op2

Lbl 0: /* label for location 0

Mcl: /* clear memory

WE":?-A: /* prompt for and store initial abs. x

"oP1":?-B: /* prompt for and store next opl

Lbl 1: /* label for location 1

(A2+A+41) +B~C: /* calc. x! + x + 41 and divide by opl

Frac C>0»Goto 2: /* if non-0 remainder then go to loc 2

CaAasGoto 0O: /* else output quotient (op2), x; next

Lbl 2: /* label for location 2

A+1-A: /* increment x

Goto 1: /* go to loc 1 to see if x now good

Program 3 - For any factor pair series w in family v in first-

plane child plane u, the following parameters and
values are found and displayed in succession for
input u, v, and w:

opl,, c4opl, c,opl, z, op2,, ¥, c,yop2, and c, Op2.

The user is then prompted for an x value (relative x within the

series. For example the first factor pair in the series has
relative x = 1). The program then displays opl,Z and op2, in
succession. The x prompt then appears again.

(To see successive answers, the EXE key is pressed once per answer.
To exit the program, after an answer appears, press AC.)

Step
Mcl: /*%* clear memory
ngn:?-U: /* prompt for and store u (plane)
EAVALIFE AV /* prompt for and store v (family)
WY oW /* prompt for and store w (series)
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U+2-F:

F-Frac F-A:
A-B:

Frac F=0»B-1-B:
A’sc:

B*+B-D:

C-2xA—E:
B’-B-F:
2x(B-A)+1-G:

2x (D-C)+1-H:
2x(F-E)+1-1:
81x(G+A)+A~J:
40x (H+C) +D+1-K:
40x(I+E-2)+F-L:
V+2-F:

F-Frac F-0:
O-P:

Frac F=0»P-1-P:
OQ*Q:

P?+P-R:

Q-2x0—+S:
P?-P-T:

2% (P-0)+1-X:
W+2-F:

F-Frac F-Y:
Y-Z:

Frac F=0»Z-1-7:
Y2-B:

z24+z-C:
2x(2-Y)+1-D:
OxXY+D—-M:
JXR+LxQ+41-Ha
2XGXR+(I-1)xXQ—Ta
2xXAXR+ (E-1) xQ+1-Ua
(GH+A) xM+XxY—-Na

(2XLx0+J (2xP+1) ) xC+ (LxS+J (T-1) +41) xB+K-Va

(3XG-A) +2xM- (X+2) XY-Fa
(NH=2+F) xN-Wa

(N+2-F) XN-Za

ILbl 1:

nwxXvw.?-X:

X+2-F:
F-Frac
A-B:
Frac F=0»B-1—-B:
alsc:

B%4+B-D:
H+CxI+DxUa
V+CxXW+DxZ A

Goto 1:

F-A:

/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

start calculating A
finish calculating,
copy A, to B,

if u even, decrement B,
calculate C;

calculate D,

calculate E|

calculate F,

calculate
calculate
calculate
calculate
calculate
calculate
start calculating A,
finish calculating,
copy A, to B,

if v even, decrement B,
calculate C,
calculate D,
calculate E,
calculate F,
calculate G,

start calculating A,
finish calculating,
copy A, to B,

if w even, decrement B,
calculate C, (we're done with B,
calculate D, (we're done with C,
(we're done with D

store in A

£ £ £ £

;xﬁC4HtEO

store in O

store in Y

calculate G,

calculate M,
calculate and
calculate and
calculate

and
calculate and

/*

and

u

display opl,
display c,opl
display c,opl
display =z

find and show op2,
display *

and display cop2
calculate and display c,o0p2
label for location 1

prompt for and store relative x
start calculating A,
finish calculating,
copy A, to B,

if x even, decrement B,
calculate C,

calculate D,

calculate and display opl,
calculate and display op2,
go to prompt for next x

calculate
calculate

store in A
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Note: memory registers in the Casio are labeled "A" to "Z" --
rather than buy more registers at the expense of the number of
program steps able to be stored, which is one option, we have
elected to judiciously reuse some memory registers once they have
served their purpose and their previous contents have been
utilized. Several of the registers in this program have been used
as many as three times (B, C, D, and F).

Program 4 -- Find the next op2 in a factor pair series, given the
next opl, the current op2, and a direction of motion

/* A, B, and C are entered manually before execution is begun for
/* the first time. After the first run, only A need be entered
/* to get subsequent results.

/* A = next opl (key in: opl value, -, alpha, A)

/* B = current op2 (key in: op2 value, -+, alpha, B)

/* C = direction (key in: 1 or -1, -, alpha, C)

Ibl 1: /* label for location 1

Frac ((/(AxBx4-163)-1)+2)=0»Ba /* if opl - op2 - f(n), stop
B+C-B: /* else calc. next op2 candidate
Goto 1: /* try opl . new op2 candidate
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